eCite Digital Repository

Stellar Populations in Three Outer Fields of the Large Magellanic Cloud


Geta, MC and Holtzman, JA and Mould, JR and Gallagher, JS and Watson, AM and Cole, AA and Grillmair, CJ and Stapelfeldt, KR and Ballester, GE and Burrows, CJ and Clarke, JT and Crisp, D and Evans, RW and Griffiths, RE and Hester, JJ and Hoessel, JG and Scowen, PA and Trauger, JT and Westphal, JA, Stellar Populations in Three Outer Fields of the Large Magellanic Cloud, The Astronomical Journal, 115, (3) pp. 1045-1056. ISSN 0004-6256 (1998) [Refereed Article]

DOI: doi:10.1086/300252


We present Hubble Space Telescope photometry for three fields in the outer disk of the Large Magellanic Cloud (LMC) extending approximately 4 mag below the faintest main-sequence turnoff. We cannot detect any strongly significant differences in the stellar populations of the three fields based on the morphologies of the color-magnitude diagrams, the luminosity functions, and the relative numbers of stars in different evolutionary stages. Our observations therefore suggest similar star formation histories in these regions, although some variations are certainly allowed. The fields are located in two regions of the LMC: one is in the northeast and two are located in the northwest. Under the assumption of a common star formation history, we combine the three fields with ground-based data at the same location as one of the fields to improve statistics for the brightest stars. We compare this stellar population with those predicted from several simple star formation histories suggested in the literature, using a combination of the R-method of Bertelli et al. (1992) and comparisons with the observed luminosity function. The only model we consider that is not rejected by the observations is one in which the star formation rate is roughly constant for most of the LMC's history and then increases by a factor of 3 about 2 Gyr ago. Such a model has roughly equal numbers of stars older and younger than 4 Gyr, and thus is not dominated by young stars. This star formation history, combined with a closed-box chemical evolution model, is consistent with observations that the metallicity of the LMC has doubled in the past 2 Gyr.

Item Details

Item Type:Refereed Article
Research Division:Physical Sciences
Research Group:Astronomical sciences
Research Field:Galactic astronomy
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the physical sciences
UTAS Author:Cole, AA (Associate Professor Andrew Cole)
ID Code:45334
Year Published:1998
Web of Science® Times Cited:87
Deposited By:Physics
Deposited On:2007-07-10
Last Modified:2007-07-10

Repository Staff Only: item control page