University of Tasmania
Browse

File(s) not publicly available

Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis

journal contribution
posted on 2023-05-16, 18:56 authored by Veksler, IV, Dorfman, AM, Leonid Danyushevsky, Jakobsen, JK, Dingwell, DB
This study investigates partitioning of elements between immiscible aluminosilicate and borosilicate liquids using three synthetic mixtures doped with 32 trace elements. In order to get a good spatial separation of immiscible liquids, we employed a high-temperature centrifuge. Experiments were performed at 1,050-1,150°C, 1 atm, in sealed Fe and Pt containers. Quenched products were analysed by electron microprobe and LA ICP-MS. Nernst partition coefficients (D's) between the Fe-rich and Si-rich aluminosilicate immiscible liquids are the highest for Zn (3.3) and Fe (2.6) and the lowest for Rb and K (0.4-0.5). The plots of D values against ionic potential Z/r in all the compositions show a convex upward trend, which is typical also for element partitioning between immiscible silicate and salt melts. The results bear upon the speciation and structural position of elements in multicomponent silicate liquids. The ferrobasalt-rhyolite liquid immiscibility is observed in evolved basaltic magmas, and may play an important role in large gabbroic intrusions, such as Skaergaard, and during the generation of unusual lavas, such as ferropicrites. © Springer-Verlag 2006.

History

Publication title

Contributions to Mineralogy and Petrology

Volume

152

Issue

6

Pagination

685-702

ISSN

0010-7999

Department/School

School of Natural Sciences

Publisher

Springer

Place of publication

Berlin

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC