eCite Digital Repository

Silicon isotopes in spring Southern Ocean diatoms: Large zonal changes despite homogeneity among size fractions


Cardinal, D and Savoye, N and Trull, TW and Dehairs, F and Kopczynska, EE and Fripiat, F and Tison, J-L and Andre, L, Silicon isotopes in spring Southern Ocean diatoms: Large zonal changes despite homogeneity among size fractions, Marine Chemistry, 106, (1-2) pp. 46-62. ISSN 0304-4203 (2007) [Refereed Article]

DOI: doi:10.1016/j.marchem.2006.04.006


We determine Southern Ocean diatom silicon isotopic signatures and compare them with the previously published data for dissolved silicic acid from the same locations. Five stations distributed along the WOCE SR-3 transect (Australian Sector of the Southern Ocean) in different biogeochemical provinces are presented: Polar Front and Inter-Polar Front Zones (PFZIPFZ), Southern Antarctic Zone (AZ-S), Seasonal Ice Zone (SIZ). Total (> 0.4 μm), medium-sized (2070 μm), and large diatoms (> 70 μm) were sampled at 24 depths in the upper 150 m. Silicon isotopic compositions of biogenic silica (diatoms) and seawater were then measured by MC-ICP-MS, in dry plasma mode using external Mg doping. Results are expressed as δ29Si relative to the NBS28 standard. The isotopic composition of diatoms (δ29SiBSi) is generally homogeneous in the mixed layer and does not exhibit a systematic isotopic fractionation linked to a size effect. δ29SiBSi are always lighter than the ambient dissolved silicic acid signatures (δ29SiDSi), reflecting the preferential uptake of light isotopes by diatoms. A trend of lighter isotopic signatures southward is observed both in diatoms and seawater samples but the δ29SiBSi latitudinal gradient is much steeper. A diatom signature as low as − 0.26 in the southernmost SIZ station strongly contrasts with the + 0.65 signature measured on PFZ diatoms. The difference between the ambient dissolved silicic acid and diatom isotopic signatures, Δ29Si, strongly increases southward: from 0.4 in the PFZ up to 1.08 in the SIZ. This points toward occurrence of mixing events in the PFZIPFZ with diatoms not being under equilibrium with their surrounding water and/or, possible variation of the diatomseawater equilibrium fractionation factor, 29ε. Apart from mixing, we found that the other parameters likely responsible of such variation are temperature, dissolved Si contents and, Si specific uptake and dissolution rates although at this stage none of these could be clearly recognized as the leading cause. Thorough examination of these parameters through in vitro experiments reflecting the extreme Southern Ocean conditions is needed to determine whether the observed latitudinal variation of Δ29Si reflects real variable fractionation or results from non-equilibrium or different time-scales recorded between dissolved and biogenic Si isotopic signatures. Our results also call for the development of more realistic models for describing short-term isotopic composition changes due to e.g. Si consumption, export and resupply via mixing. Finally, by comparing δ29SiBSi within and below the mixed layer, we could identify a two-step history of the PFZIPFZ bloom in contrast to the recently started diatom bloom in the SIZ.

Item Details

Item Type:Refereed Article
Keywords:diatoms, silicon isotopes, silicon cycle, isotope fractionation, nutrient cycles, Southern Ocean
Research Division:Earth Sciences
Research Group:Oceanography
Research Field:Chemical oceanography
Objective Division:Environmental Management
Objective Group:Marine systems and management
Objective Field:Measurement and assessment of marine water quality and condition
UTAS Author:Trull, TW (Professor Thomas Trull)
ID Code:43328
Year Published:2007 (online first 2006)
Web of Science® Times Cited:67
Deposited By:IASOS
Deposited On:2006-08-01
Last Modified:2017-04-20

Repository Staff Only: item control page