eCite Digital Repository

Influence of Lattice Interactions on the Jahn-Teller Distortion of the [Cu(H2O)6]2+ Ion: Dependence of the Crystal Structure of K2[Cu(H2O)6](SO4)2x(SeO4)2-2x upon the Sulfate/Selenate Ratio

Citation

Simmons, CJ and Stratemeier, H and Hitchman, MA and Riley, MJ, Influence of Lattice Interactions on the Jahn-Teller Distortion of the [Cu(H2O)6]2+ Ion: Dependence of the Crystal Structure of K2[Cu(H2O)6](SO4)2x(SeO4)2-2x upon the Sulfate/Selenate Ratio, Inorganic Chemistry, 45, (3) pp. 1021-1031. ISSN 0020-1669 (2006) [Refereed Article]

DOI: doi:10.1021/ic050790j

Abstract

The temperature dependence of the structure of the mixed-anion Tutton salt K2[Cu(H2O)6](SO4) 2x(SeO4)2-2x has been determined for crystals with 0, 17, 25, 68, 78, and 100% sulfate over the temperature range of 85-320 K. In every case, the [Cu(H2O)6]2+ ion adopts a tetragonally elongated coordination geometry with an orthorhombic distortion. However, for the compounds with 0, 17, and 25% sulfate, the long and intermediate bonds occur on a different pair of water molecules from those with 68, 78, and 100% sulfate. A thermal equilibrium between the two forms is observed for each crystal, with this developing more readily as the proportions of the two counterions become more similar. Attempts to prepare a crystal with approximately equal amounts of sulfate and selenate were unsuccessful. The temperature dependence of the bond lengths has been analyzed using a model in which the Jahn-Teller potential surface of the [Cu(H2O) 6]2+ ion is perturbed by a lattice-strain interaction. The magnitude and sign of the orthorhombic component of this strain interaction depends on the proportion of sulfate to selenate. Significant deviations from Boltzmann statistics are observed for those crystals exhibiting a large temperature dependence of the average bond lengths, and this may be explained by cooperative interactions between neighboring complexes. © 2006 American Chemical Society.

Item Details

Item Type:Refereed Article
Research Division:Chemical Sciences
Research Group:Inorganic Chemistry
Research Field:Transition Metal Chemistry
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Chemical Sciences
Author:Stratemeier, H (Dr Horst Stratemeier)
Author:Hitchman, MA (Dr Michael Hitchman)
ID Code:43081
Year Published:2006
Web of Science® Times Cited:12
Deposited By:Chemistry
Deposited On:2006-08-01
Last Modified:2007-04-03
Downloads:0

Repository Staff Only: item control page