University of Tasmania
Browse

File(s) not publicly available

Up-regulation of glutathione-related genes and enzyme activities in cultured human cells by sub-lethal concentrations of inorganic arsenic

journal contribution
posted on 2023-05-16, 18:34 authored by Schuliga, M, Chouchane, S, Elizabeth Snow
Inorganic arsenic (iAs), a known human carcinogen, acts as a tumor promoter in part by inducing a rapid burst of reactive oxygen species (ROS) in mammalian cells. This causes oxidative stress and a subsequent increase in the level of cellular glutathione (GSH). Glutathione, a ubiquitous reducing sulfhydryl tripeptide, is involved in ROS detoxification and its increase may be part of an adaptive response to the oxidative stress. Glutathione related enzymes including glutathione reductase (GR) and glutathione S-transferase (GST) also play key roles in these processes. In this study the regulatory effects of inorganic arsenite (AsIII) on the activities of GSH-related enzymes were investigated in cultured human keratinocytes. Substantial increases in GR enzyme activity and mRNA levels were shown in keratinocytes and other human cell lines after exposure to low, subtoxic, micromolar concentrations of AsIII for 24 h. Upregulation of GSH synthesis paralleled the upregulation of GR as shown by increases in glutamate-cysteine lyase (GCL) enzyme activity and mRNA levels, cystine uptake, and intracellular GSH levels. Glutathione S-transferase activity was also shown to increase slightly in keratinocytes, but not in fibroblasts or breast tumor cells. Overall the results show that sublethal arsenic induces a multicomponent response in human keratinocytes that involves upregulation of parts, but not all of the GSH system and counteracts the acute toxic effects of iAs. The upregulation of GR has not previously been shown to be an integral part of this response, although GR is critical for maintaining levels of reduced GSH.

History

Publication title

Toxicological Sciences

Volume

70

Pagination

183-192

ISSN

1096-6080

Department/School

School of Health Sciences

Publisher

Oxford University Press

Place of publication

Oxford

Repository Status

  • Restricted

Socio-economic Objectives

Public health (excl. specific population health) not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC