eCite Digital Repository

Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling in the western Sargasso Sea

Citation

Mongin, M and Nelson, DM and Pondaven, P and Brzezinski, MA and Treguer, P, Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling in the western Sargasso Sea, Deep-Sea Research Part 1, 50, (12) pp. 1445-1480. ISSN 0967-0637 (2003) [Refereed Article]

DOI: doi:10.1016/j.dsr.2003.08.003

Abstract

We report the first application of a biogeochemical model in which the major elemental composition of the phytoplankton is flexible, and responds to changing light and nutrient conditions. The model includes two phytoplankton groups: diatoms and non-siliceous picoplankton. Both fix C in accordance with photosynthesis-irradiance relationships used in other models and take up NO 3 - and NH4 + (and Si(OH)4 for diatoms) following Michaelis-Menten kinetics. The model allows for light dependence of photosynthesis and NO3 - uptake, and for the observed near-total light independence of NH4 + uptake and Si(OH)4 uptake. It tracks the resulting /N ratios of both phytoplankton groups and Si/N ratio of diatoms, and permits uptake of C, N and Si to proceed independently of one another when those ratios are close to those of nutrient-replete phytoplankton. When the C/N or Si/N ratio of either phytoplankton group indicates that its growth is limited by N, Si or light, uptake of non-limiting elements is controlled by the content of the limiting element in accordance with the cell-quota formulation of Droop (J. Mar. Biol. Ass. U.K 54 (1974) 825). We applied this model to the Bermuda Atlantic Time-series Study (BATS) site in the western Sargasso Sea. The model was tuned to produce vertical profiles and time courses of [NO3 -], [NH4 +] and [Si(OH)4] that are consistent with the data, by adjusting the kinetic parameters for N and Si uptake and the rate of nitrification. The model then reproduces the observed time courses of chlorophyll-a, particulate organic carbon and nitrogen, biogenic silica, primary productivity, biogenic silica production and POC export with no further tuning. Simulated C/N and Si/N ratios of the phytoplankton indicate that N is the main growth-limiting nutrient throughout the thermally stratified period and that [Si(OH)4], although always limiting to the rate of Si uptake by diatoms, seldom limits their growth rate. The model requires significant nitrification in the upper 200 m to yield realistic time courses and vertical profiles of [NH4 +] and [NO3 -], suggesting that NO3 - is not supplied to the upper water column entirely by physical processes. A nitrification- corrected f-ratio (fNC), calculated for the upper 200 m as: (NO 3 - uptake - nitrification)/(NO3 - uptake+ NH4 + uptake) has annual values ranging from only ∼0.05-0.09, implying that 90-95% of the N taken up annually by phytoplankton is supplied by biological regeneration (including nitrification) in the upper 200 m. Reported discrepancies between estimates of organic C export based on seasonal chemical changes and POC export measured at the BATS site can be almost completely resolved if there is significant regeneration of NO3 - via organic-matter decomposition in the upper 200 m. © 2003 Elsevier Ltd. All rights reserved.

Item Details

Item Type:Refereed Article
Research Division:Earth Sciences
Research Group:Oceanography
Research Field:Biological Oceanography
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Environmental Sciences
Author:Mongin, M (Mr Mathieu Mongin)
ID Code:35699
Year Published:2003
Web of Science® Times Cited:33
Deposited By:CRC-Antarctic Climate & Ecosystems
Deposited On:2005-08-26
Last Modified:2005-08-26
Downloads:0

Repository Staff Only: item control page