eCite Digital Repository

Origins of compositional heterogeneity in olivine-hosted melt inclusions from the Baffin Island picrites

Citation

Yaxley, GM and Kamenetsky, VS and Kamenetsky, M and Norman, MD and Francis, D, Origins of compositional heterogeneity in olivine-hosted melt inclusions from the Baffin Island picrites, Contributions to Mineralogy and Petrology, 148, (4) pp. 426-442. ISSN 0010-7999 (2004) [Refereed Article]

DOI: doi:10.1007/s00410-004-0613-z

Abstract

The Baffin Island picrites are highly magnesian (< 22 wt% MgO) olivine tholeiites, erupted through felsic continental crust. Plots of most major and minor element oxides against MgO for the lavas define very tight trends consistent with modification of melts parental to the erupted suite by olivine fractionation or accumulation. However, melt inclusions trapped in primitive olivine phenocrysts in these lavas have much more diverse compositions. After correction for post-entrapment modification, the inclusions are systematically slightly lower in Al2 O3, and significantly higher in SiO2, K2O and P2O5 than the lavas' fractionation trends. CaO, Na2O and TiO2 contents lie within the lavas' fractionation trends. Similarly, most inclusions are higher in Sr/Nd, K/Nb, Rb/Ba, Rb/Sr, U/Nb and Ba/Th than the lavas. These characteristics resulted from up to ≈15% contamination of evolving picritic-basaltic liquids by locally-derived, broadly granitic partial melts of the quartz + feldspar-rich crust through which the picrites erupted. Contamination was minor in the bulk lavas (<1%), suggesting that the inclusions' compositions partly reflect a link between wall rock reaction and precipitation of liquidus olivine. Rapid crystallisation of liquidus olivine from the picrites, along with melting of felsic crustal wall rocks of magma chambers or conduits, were likely during emplacement of hot picritic magmas into cooler felsic crust. Inclusion compositions may thus reflect mixing trends or may be constrained to phase boundaries between olivine and a phase being resorbed, for example, an olivine-plagioclase cotectic. The extent of contamination was probably a complex function of diffusion rates of components in the magmas, and phenocryst growth rates and proximity to wall rock. These results bear on the common observation that melt inclusions' compositions are frequently more heterogeneous than those of the lavas that host them. © Springer-Verlag 2004.

Item Details

Item Type:Refereed Article
Research Division:Earth Sciences
Research Group:Geology
Research Field:Igneous and Metamorphic Petrology
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Earth Sciences
Author:Kamenetsky, VS (Professor Vadim Kamenetsky)
Author:Kamenetsky, M (Dr Maya Kamenetsky)
ID Code:32679
Year Published:2004
Web of Science® Times Cited:27
Deposited By:Centre for Ore Deposit Research - CODES CoE
Deposited On:2004-08-01
Last Modified:2010-08-25
Downloads:0

Repository Staff Only: item control page