eCite Digital Repository

The mechanism of Re enrichment in arc magmas: evidence from Lau Basin basaltic glasses and primitive melt inclusions

Citation

Sun, WD and Bennett, VC and Kamenetsky, VS, The mechanism of Re enrichment in arc magmas: evidence from Lau Basin basaltic glasses and primitive melt inclusions, Earth and Planetary Science Letters, 222, (1) pp. 101-114. ISSN 0012-821X (2004) [Refereed Article]

DOI: doi:10.1016/j.epsl.2004.02.011

Abstract

Rhenium and other trace element data were obtained in situ by laser ablation ICP-MS analysis of submarine-erupted volcanic glasses and olivine-hosted melt inclusions from the Valu Fa Ridge, the south tip of the Lau Basin, in the southwestern Pacific Ocean. The chemistry of the Lau Basin basaltic glasses changes systematically from compositions similar to MORB in the Lau Spreading Centers, to more arc-like compositions in the Valu Fa Ridge, providing geochemical profiles both along the Lau Spreading Centers (ridges) and across the Valu Fa Ridge. The east seamount samples of the Valu Fa Ridge have diagnostic trace element ratios (Ba/Nb, Nb/U, Ce/Pb) close to global arc averages, with high Ba/La, indicating addition of considerable amounts of subduction-released fluids. In contrast, samples from the west seamount and the Lau Spreading Centers show a smaller influence from subduction fluids. The variable degrees of subduction influences apparent in the chemistry of these suites provide an ideal means to explore the mechanisms of Re enrichment in undegassed arc magmas. All of the analyzed arc melts have significantly higher Re concentrations than previously published, largely subaerially erupted samples, confirming that high Re is a characteristic of undegassed arc magmas. The east seamount samples are characterized by higher Re and lower Yb/Re than the more MORB-like Lau Spreading Center lavas. The lack of correlation between Yb/Re and Fo of host olivine suggests that low Yb/Re is not due to magmatic differentiation. When the Lau Basin sample suite is plotted together with MORB data, Yb/Re is positively correlated with Ce/Pb and Nb/U, and negatively correlated with Ba/Nb, indicating that Re is much more mobile than Yb during dehydration of subducted slabs. Thus, Re enrichment in arc magmas is likely due to addition of Re via fluids released from subducted slabs; the recognition of high Re in arcs favors arguments for a slab origin of radiogenic 187Os/ 188Os components in arc rocks. © 2004 Elsevier B.V. All rights reserved.

Item Details

Item Type:Refereed Article
Research Division:Earth Sciences
Research Group:Geochemistry
Research Field:Geochemistry not elsewhere classified
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Earth Sciences
Author:Kamenetsky, VS (Professor Vadim Kamenetsky)
ID Code:32674
Year Published:2004
Web of Science® Times Cited:50
Deposited By:Centre for Ore Deposit Research - CODES CoE
Deposited On:2004-08-01
Last Modified:2010-08-25
Downloads:0

Repository Staff Only: item control page