eCite Digital Repository

Binding partners L1 cell adhesion molecule and the ezrin-radixin-moesin (ERM) proteins are involved in the development and the regenerative response to injury of hippocampal and cortical neurons

Citation

Haas, MA and Vickers, JC and Dickson, TC, Binding partners L1 cell adhesion molecule and the ezrin-radixin-moesin (ERM) proteins are involved in the development and the regenerative response to injury of hippocampal and cortical neurons, European Journal of Neuroscience, 20, (6) pp. 1436-1444. ISSN 0953-816X (2004) [Refereed Article]

DOI: doi:10.1111/j.1460-9568.2004.03620.x

Abstract

Regeneration of the adult central nervous system may require recapitulation of developmental events and therefore involve the re-expression of developmentally significant proteins. We have investigated whether the L1 cell adhesion molecule, and its binding partner, the ezrin-radixin-moesin (ERM) proteins are involved in the neuronal regenerative response to injury. Hippocampal and cortical neurons were cultured in vitro on either an L1 substrate or poly-L-lysine, and ERM and other neuronal proteins were localized immunocytochemically both developmentally and following neurite transection of neurons maintained in long-term culture. Activated ERM was localized to growth cones up to 7 days in vitro but relatively mature cultures (21 days in vitro) were devoid of active ERM proteins. However, ERM proteins were localized to the growth cones of sprouting neuronal processes that formed several hours after neurite transection. In addition, the L1 substrate, relative to poly-L-lysine, resulted in significantly longer regenerative neurites, as well as larger growth cones with more filopodia. Furthermore, neurons derived from the cortex formed significantly longer post-injury neurite sprouts at 6 h post-injury than hippocampal derived neurons grown on both substrates. We have demonstrated that L1 and the ERM proteins are involved in the neuronal response to injury, and that neurons derived from the hippocampus and cortex may have different post-injury regenerative neurite sprouting abilities.

Item Details

Item Type:Refereed Article
Research Division:Medical and Health Sciences
Research Group:Neurosciences
Research Field:Neurosciences not elsewhere classified
Objective Division:Health
Objective Group:Clinical Health (Organs, Diseases and Abnormal Conditions)
Objective Field:Nervous System and Disorders
Author:Haas, MA (Dr Matilda Haas)
Author:Vickers, JC (Professor James Vickers)
Author:Dickson, TC (Professor Tracey Dickson)
ID Code:32374
Year Published:2004
Web of Science® Times Cited:27
Deposited By:Pathology
Deposited On:2004-08-01
Last Modified:2005-05-27
Downloads:0

Repository Staff Only: item control page