eCite Digital Repository

Non-Newtonian blood flow in human right coronary arteries: steady state simulations

Citation

Johnston, BM and Johnston, PR and Corney, SP and Kilpatrick, D, Non-Newtonian blood flow in human right coronary arteries: steady state simulations, Journal of Biomechanics, 37, (5) pp. 709-720. ISSN 0021-9290 (2004) [Refereed Article]

DOI: doi:10.1016/j.jbiomech.2003.09.016

Abstract

This study looks at blood flow through four different right coronary arteries, which have been reconstructed from bi-plane angiograms. Five non-Newtonian blood models, as well as the usual Newtonian model of blood viscosity, are used to study the wall shear stress in each of these arteries at a particular point in the cardiac cycle. It was found that in the case of steady flow in a given artery, the pattern of wall shear stress is consistent across all models. The magnitude of wall shear stress, however, is influenced by the model used and correlates with graphs of shear stress versus strain for each model. For mid-range velocities of around 0.2 m s-1, the models are virtually indistinguishable. Local and global non-Newtonian importance factors are introduced, in an attempt to quantify the types of flows where non-Newtonian behaviour is significant. It is concluded that, while the Newtonian model of blood viscosity is a good approximation in regions of mid-range to high shear, it is advisable to use the Generalised Power Law model (which tends to the Newtonian model in those shear ranges in any case) in order to achieve better approximation of wall shear stress at low shear. © 2003 Elsevier Ltd. All rights reserved.

Item Details

Item Type:Refereed Article
Research Division:Mathematical Sciences
Research Group:Applied Mathematics
Research Field:Biological Mathematics
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Mathematical Sciences
Author:Corney, SP (Dr Stuart Corney)
Author:Kilpatrick, D (Professor David Kilpatrick)
ID Code:30753
Year Published:2004
Web of Science® Times Cited:277
Deposited By:Medicine (Discipline)
Deposited On:2004-08-01
Last Modified:2010-06-05
Downloads:0

Repository Staff Only: item control page