University of Tasmania
Browse

File(s) not publicly available

Reducing Fennel Stand Density Increases Pollen Production, Improving Potential for Pollination and Subsequent Oil Yield

journal contribution
posted on 2023-05-16, 14:53 authored by Falzari, L, Robert MenaryRobert Menary, Dragar, VA
Fruit set is a key component of essential oil yield from fennel (Foeniculum vulgare Mill.) under Tasmanian conditions. Fruit set in commercial crops is often low, possibly due to incomplete pollination. Fennel flowers are strongly protandrous and a series of flowers must be produced to ensure pollination. The hypothesis tested was that decreasing stand density increases the number of lateral branches, thereby increasing the number of higher order umbels and thus increasing the overlap between the periods of pollen production and stigma receptivity. A field trial was used to examine the number of umbels of each order produced under stand densities of 4, 12, 25, 50 and 100 plants/m 2. Stand density influenced the ratio of pollen producing to pollen receptive umbels and stand densities of 50 and 100 plants/m2 showed a distinct imbalance between pollen production and stigma receptivity. The data collected supported the hypothesis and it is probable that, in commercial crops, fruit set is being reduced by a lack of synchrony between pollen production and stigma receptivity. The highest stand density tested reduced total oil production. We therefore recommend the inclusion of low stand-density strips within standard-density commercial crops.

History

Publication title

HortScience

Volume

40

Pagination

629-634

ISSN

0018-5345

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

American Society for Horticultural Science

Place of publication

United States

Repository Status

  • Restricted

Socio-economic Objectives

Environmentally sustainable plant production not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC