University of Tasmania
Browse
321.pdf.pdf (135.2 kB)

Trace determination of arsenic species by capillary electrophoresis with direct UV detection using sensitivity enhancement by counter- or co-electroosmotic flow stacking and a high-sensitivity cell

Download (135.2 kB)
journal contribution
posted on 2023-05-16, 14:27 authored by Sun, B, Miroslav MackaMiroslav Macka, Paul HaddadPaul Haddad
Stacking techniques used independently and also with a high-sensitivity cell (HSC) were employed to optimise sensitivity and detection limits in the direct photometric detection of the following eight arsenic species by capillary zone electrophoresis (CZE): arsenite, arsenate, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), 4-hydroxy-3-nitrophenylarsonic acid (Roxarsone), p-aminophenylarsonic acid (p-ASA), 4-nitrophenylarsonic acid (4-NPAA), and phenylarsonic acid (PAA) (target analytes). The stacking mechanisms, optimised stacking and separation conditions, and concentration sensitivity enhancement factors were discussed and compared for (i) normal stacking mode (NSM, sometimes also referred to as field-amplified stacking) in an uncoated fused-silica capillary in the counter-electroosmotic flow (EOF) mode, (ii) large-volume sample stacking (LVSS) with polarity switching, and (iii) the less often applied stacking method of co-EOF NSM stacking with EOF reversal using a poly(diallydimethylammonium chloride) (PDDAC)-coated capillary. The optimal injection volumes were 7.4, 60 and 17.2% of the total capillary volume, for the above three methods, respectively. LVSS with polarity switching gave the lowest limit of detection (LOD). The use of the HSC further reduced the LOD of each target analytes by a factor of 5-8 times. By combining LVSS and HSC, LODs of the target analytes could be reduced by a factor of 218-311, to 5.61, 9.15, 11.1, and 17.1 μg/L for As(III), DMA, MMA, and As(V), respectively. The method was demonstrated to be applicable to the determination of the target analytes in tap water and lake water, with recoveries in the range of 89.4-103.3%.

History

Publication title

Electrophoresis

Volume

24

Issue

12-13

Pagination

2045-2053

ISSN

0173-0835

Department/School

School of Natural Sciences

Publisher

Wiley-V C H Verlag GMBH

Place of publication

Weinheim, Germany

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC