University of Tasmania
Browse

File(s) not publicly available

Selection for restraint in competitive ability in spatial competition systems

journal contribution
posted on 2023-05-16, 13:55 authored by Craig JohnsonCraig Johnson, Seinen, I
The absence of 'super competitors' in nature is usually attributed to organisms facing trade-offs in resource allocation. Here we identify another mechanism, dependent on indirect interactions among species and non-random spatial organization, in which selection favours restraint in competitive ability. In simple spatial models of a three-species intransitive network, indirect interactions favour slower growth and selection limits the difference in growth rate among species. The mechanism involves a trade-off between selection at the individual level, which selects for increased growth rate, and at the community level, which acts to limit growth rate to less than the maximum possible. If the difference in growth rates among species becomes too large, then the community becomes unstable and collapses to a monoculture of the slowest growing species. The mechanism requires both the intransitive network structure and self-organized spatial structure in the system. Similar behaviours arise in more complex systems of more than three species, and where there are reversals in interaction outcomes between species pairs. The work suggests that spatial self-structuring, indirect interactions and selection acting on community properties can be important in evolution. It provides a partial explanation of the high level of species coexistence and apparent restraint in interspecific interactions evident in some assemblages of sessile marine colonial organisms.

History

Publication title

Proceedings of the Royal Society of London Series B - Biological Sciences

Volume

269

Issue

1492

Pagination

655-663

ISSN

0962-8452

Department/School

School of Natural Sciences

Publisher

Royal Society London

Place of publication

UK

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC