eCite Digital Repository

A Converging Slot-Hole Film-Cooling Geometry-Part 1: Low-Speed Flat-Plate Heat Transfer and Loss


Sargison, J and Guo, SM and Oldfield, MLG and Lock, GD and Rawlinson, AJ, A Converging Slot-Hole Film-Cooling Geometry-Part 1: Low-Speed Flat-Plate Heat Transfer and Loss, Transactions of the ASME: Journal of Turbomachinery, 124, (3) pp. 453-460. ISSN 0889-504X (2002) [Refereed Article]

DOI: doi:10.1115/1.1459735


This paper presents experimental measurements of the performance of a new film-cooling hole geometry-the converging slot-hole or console. This novel, patented geometry has been designed to improve the heat transfer and aerodynamic loss performance of turbine vane and rotor blade cooling systems. The physical principles embodied in the new hole design are described, and a typical example of the console geometry is presented. The cooling performance of a single row of consoles was compared experimentally with that of typical 35-deg cylindrical and fan-shaped holes and a slot, on a large-scale, flat-plate model at engine representative Reynolds numbers in a low-speed tunnel with ambient temperature main flow. The hole throat area per unit width is matched for all four hole geometries. By independently varying the temperature of the heated coolant and the heat flux from an electrically heated, thermally insulated, constant heat flux surface, both the heat transfer coefficient and the adiabatic cooling effectiveness were deduced from digital photographs of the color play of narrow-band thermochromic liquid crystals on the model surface. A comparative measurement of the aerodynamic losses associated with each of the four film-cooling geometries was made by traversing the boundary layer at the down-stream end of the flat plate. The promising heat transfer and aerodynamic performance of the console geometry have justified further experiments on an engine representative nozzle guide vane in a transonic annular cascade presented in Part 2 of this paper.

Item Details

Item Type:Refereed Article
Research Division:Engineering
Research Group:Aerospace engineering
Research Field:Aircraft performance and flight control systems
Objective Division:Transport
Objective Group:Aerospace transport
Objective Field:Air safety and traffic management
UTAS Author:Sargison, J (Dr Jane Sargison)
ID Code:23952
Year Published:2002
Web of Science® Times Cited:151
Deposited By:Engineering
Deposited On:2002-08-01
Last Modified:2007-10-30

Repository Staff Only: item control page