University of Tasmania
Browse

File(s) not publicly available

Predicted groundwater circulation in fractured and unfractured anisotropic porous media driven by nuclear fuel waste heat generation

journal contribution
posted on 2023-05-16, 12:40 authored by Yang, J, Edwards, RN
The concept of nuclear fuel waste disposal underground is drawing increasing attention due to its many advantages against the current storage methods at surface. In this paper, we employ the Galerkin finite-element technique to solve the coupled time-dependent heat transfer and fluid flow differential equations and to predict the evolving behaviour of groundwater flow and subsurface temperature distribution associated with a proposed disposal system at the Whiteshell Research Area in southeastern Manitoba. A two-dimensional (2-D) numerical model is conceptualized from geological constraints in this particular area. To investigate the free convection of groundwater flow driven by nuclear fuel waste heat generation, we assume the 2-D model has a flat upper boundary so as to eliminate the effect of topography head. Buoyancy force due to fluid density variations is, therefore, the sole driving mechanism for fluid migration. Case studies for both unfractured and fractured porous media confirm that thermal decay of the buried fuel waste can initiate fluid circulation. In the presence of discrete fractures, the deep and hot fluid nearby the disposed contaminant can discharge to the biosphere, thus potentially threatening human health and the natural environment.

History

Publication title

Canadian Journal of Earth Sciences

Volume

37

Issue

9

Pagination

1301-1308

ISSN

0008-4077

Department/School

School of Natural Sciences

Publisher

NRC Research Press

Place of publication

Ottawa, ON, Canada

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC