University of Tasmania
Browse

File(s) not publicly available

Is social aggregation in aquatic crustaceans a strategy to conserve energy?

journal contribution
posted on 2023-05-16, 12:19 authored by Ritz, DA
Antarctic krill, Euphausia superba, is preeminently a gregarious animal. It lives for almost the whole of its existence from the late furcilia stage in aggregations. Despite this, laboratory study of schooling and swarming behaviour has been seriously neglected and critical emergent properties of group dynamics may have been overlooked. Using different-sized groups of gregarious mysids, I show that weight-specific oxygen uptake is reduced by about seven times when they form cohesive aggregations compared with when they are in uncohesive small groups. If this is true for E. superba, it casts doubt on all previous measurements of metabolic rate and suggests that estimates of the metabolic cost of swimming and perhaps feeding are much too high. The reason that groups conserve energy compared with isolates or small groups is hypothesised to be at least partly due to hydrodynamic processes, which serve to minimise sinking rates. Dye plumes revealed updrafts generated by mysid swarms, which could be exploited by individuals to reduce their sinking rate. These circulation patterns might also increase the efficiency of particle capture by aggregations. I propose that aggregation in aquatic crustaceans is a strategy to optimise energy expenditure and maximise food capture. Measuring behavioural and physiological rate processes in isolated animals will produce only artifacts.

History

Publication title

Canadian Journal of Fisheries and Aquatic Sciences

Volume

57

Pagination

1-9

ISSN

0706-652X

Department/School

Institute for Marine and Antarctic Studies

Publisher

University of Guelph

Place of publication

Canada

Repository Status

  • Restricted

Socio-economic Objectives

Environmentally sustainable animal production not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC