University of Tasmania
Browse

File(s) not publicly available

Loss of Fas-Ligand Expression in Mouse Keratinocytes during UV Carcinogenesis

journal contribution
posted on 2023-05-16, 12:10 authored by Ouhtit, A, Gorny, A, Muller, HK, Hill, LL, Owen-Schaub, L, Ananthaswamy, HN
Skin cells containing excessive ultraviolet (UV) radiation-induced DNA damage are eliminated by apoptosis that involves the p53 pathway and Fas/Fas-Ligand (Fas-L) interactions. To determine whether dysregulation of apoptosis plays a role in skin cancer development through disruption of Fas/Fas-L interactions, hairless SKH-hr1 mice were exposed to chronic UV irradiation from Kodacel-filtered FS40 lamps for 30 weeks. Their skin was analyzed for the presence of sunburn cells (apoptotic keratinocytes) and for Fas and Fas-L expression at various time points. A dramatic decrease in the numbers of morphologically identified sunburn cells and TUNEL-positive cells was detected as early as 1 week after chronic UV exposure began. After 4 weeks of chronic UV exposure, these cells were barely detectable. This defect in apoptosis was paralleled by an initial decrease in Fas-L expression during the first week of chronic UV irradiation and a complete loss of expression after 4 weeks. Fas expression, however, increased during the course of chronic UV exposure.p53 mutations were detected in the UV-irradiated epidermis as early as 1 week after irradiation began and continued to accumulate with further UV exposure. Mice exposed to chronic UV began to develop skin tumors after approximately 8 weeks, and all mice had multiple skin tumors by 24 weeks. Most of the tumors expressed Fas but not Fas-L. We conclude that chronic UV exposure may induce a loss of Fas-L expression and a gain in p53 mutations, leading to dysregulation of apoptosis, expansion of mutated keratinocytes, and initiation of skin cancer.

History

Publication title

American Journal of Pathology

Volume

157

Issue

6

Pagination

1975-1981

ISSN

0002-9440

Department/School

Tasmanian School of Medicine

Publisher

American Society for Investigative Pathology

Place of publication

Bethesda, MD, USA

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC