University of Tasmania
Browse

File(s) not publicly available

Electron paramagnetic resonance (EPR) spectroscopy in massive sulphide exploration, Rosebery mine rea, western Tasmania, Australia

journal contribution
posted on 2023-05-16, 11:59 authored by Pwa, A, Van Moort, JC
Electron paramagnetic resonance (EPR) spectroscopy of hot HNO3 insoluble residues of rock powders is used as a new exploration technique for the volcanic-hosted massive sulphide (VHMS) deposit in the Rosebery mine area. The EPR signal intensities measured in 326.5 ± 5 mT sweeps are strong in the altered rocks, and show a negative correlation with Ca, Na and Sr, and a positive correlation with K/Na, Rb/Sr and (K x Rb)/(Ca x Na x Sr). The EPR intensities measured in 326.5 ± 100 mT sweeps show high values in the footwall pyroclastics, host rocks and hanging wall pyroclastics near and around the Rosebery deposit, and correlate positively with K, Fe, Mn, Ba, F, Rb, Zn, Pb and Zr. The Rosebery deposit and associated footwall alteration zone are located at the intersection of two elongated paramagnetic halos. The first is characterized by strong intensities of [AIO4]°signals measured at magnetic flux density sweeps over 326.5 ± 5 mT, trends NE-SW, and passes discordantly from the west to the east the White Spur Formation, altered footwall (footwall alteration zone), host rock of the Rosebery deposit, hanging wall and Mount Black Volcanics. The second, largely stratabound, halo is defined by strong intensities of Mn2+ sextets observed at magnetic flux density sweeps over 326.5 ± 100 mT, runs N-S following the stratigraphic trend, and outlines the mineralized host rock and footwall alteration zone. It also extends toward the south into the unaltered footwall and hanging wall rocks. The first type of halo is considered to be related to wall rock alteration due to the VHMS mineralization processes as well to later Devonian metamorphism, and the second is thought to be related to massive sulphide mineralization alone. | Electron paramagnetic resonance (EPR) spectroscopy of hot HNO3 insoluble residues of rock powders is used as a new exploration technique for the volcanic-hosted massive sulphide (VHMS) deposit in the Rosebery mine area. The EPR signal intensities measured in 326.5±5 mT sweeps are strong in the altered rocks, and show a negative correlation with Ca, Na and Sr, and a positive correlation with K/Na, Rb/Sr and (K×Rb)/(Ca×Na×Sr). The EPR intensities measured in 326.5±100 mT sweeps show high values in the footwall pyroclastics, host rocks and hanging wall pyroclastics near and around the Rosebery deposit, and correlate positively with K, Fe, Mn, Ba, F, Rb, Zn, Pb and Zr. The Rosebery deposit and associated footwall alteration zone are located at the intersection of two elongated paramagnetic halos. The first is characterized by strong intensities of [AlO4]° signals measured at magnetic flux density sweeps over 326.5±5 mT, trends NE-SW, and passes discordantly from the west to the east the White Spur Formation, altered footwall (footwall alteration zone), host rock of the Rosebery deposit, hanging wall and Mount Black Volcanics. The second, largely stratabound, halo is defined by strong intensities of Mn2+ sextets observed at magnetic flux density sweeps over 326.5±100 mT, runs N-S following the stratigraphic trend, and outlines the mineralized host rock and footwall alteration zone. It also extends toward the south into the unaltered footwall and hanging wall rocks. The first type of halo is considered to be related to wall rock alteration due to the VHMS mineralization processes as well to later Devonian metamorphism, and the second is thought to be related to massive sulphide mineralization alone.

History

Publication title

Journal of Geochemical Exploration

Volume

65

Pagination

155-172

ISSN

0375-6742

Department/School

School of Natural Sciences

Publisher

Elsevier Science

Place of publication

Amstrerdam, Netherlands

Repository Status

  • Restricted

Socio-economic Objectives

Other mineral resources (excl. energy resources) not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC