University of Tasmania
Browse
202.pdf.pdf (714.22 kB)

Mixed-mode capillary electrochromatographic separation of anionic analytes

Download (714.22 kB)
journal contribution
posted on 2023-05-16, 11:38 authored by Emily HilderEmily Hilder, Miroslav MackaMiroslav Macka, Paul HaddadPaul Haddad
In this work, mixed-mode capillary electrochromatography is introduced as a method for selectivity manipulation in the separation of charged analytes and is investigated for a number of analytes. This concept involves utilising a component of the eluent to permit the chromatographic and capillary electrophoresis (CE) separation mechanisms to contribute in varying proportions to the separation. This approach was first investigated using a combination of CE with reversed-phase liquid chromatography (RP-LC) for hydrophobic, charged analytes (aliphatic sulfonates), and using the concentration of organic modifier in the eluent to control the contributions of CE and RP-LC. However, the use of reversed-phase columns was found to be problematic for mobile phases with less then 50% organic modifier due to the hydrophobicity of the stationary phase causing the column bed to overheat and dry, and low electroosmotic flow (EOF) values (μ ≤ 17.8 × 10-9 m2 V-1 s-1) caused additional restrictions. In a second case, ion-exchange stationary phases were used, with the type and concentration of a competing anion in the eluent being used to control the contributions of ion chromatography (IC) and CE to the separation. Nine common inorganic anions were separated using a silica based anion-exchange column and phosphate (pH 7.20) or sulfate (pH 8.2) as eluent with direct UV detection at 214 nm and 17 inorganic and small organic anions were separated using a nitrate eluent (pH 6.80) with indirect UV detection at 214 nm. The separation selectivity was shown to be a combination of IC and CE.

History

Publication title

Analytical Communications

Volume

36

Issue

8

Pagination

299-303

ISSN

1359-7337

Department/School

School of Natural Sciences

Publisher

Royal Society of Chemistry

Place of publication

UK

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC