University of Tasmania
Browse

File(s) under permanent embargo

Transcriptomic and proteomic retinal pigment epithelium signatures of age-related macular degeneration

journal contribution
posted on 2023-05-21, 16:47 authored by Senabouth, A, Daniszewski, M, Lidgerwood, GE, Liang, HH, Hernandez, D, Mirzaei, M, Keenan, SN, Zhang, R, Han, X, Neavin, D, Rooney, L, Lopez Sanchez, MIG, Gulluyan, L, Paulo, JA, Clarke, L, Kearns, LS, Gnanasambandapillai, V, Chan, CL, Nguyen, U, Steinmann, AM, McCloy, RA, Farbehi, N, Gupta, VK, Mackey, DA, Bylsma, G, Nitin VermaNitin Verma, MacGregor, S, Watt, MJ, Guymer, RH, Powell, JE, Alexander HewittAlexander Hewitt, Pebay, A
There are currently no treatments for geographic atrophy, the advanced form of age-related macular degeneration. Hence, innovative studies are needed to model this condition and prevent or delay its progression. Induced pluripotent stem cells generated from patients with geographic atrophy and healthy individuals were differentiated to retinal pigment epithelium. Integrating transcriptional profiles of 127,659 retinal pigment epithelium cells generated from 43 individuals with geographic atrophy and 36 controls with genotype data, we identify 445 expression quantitative trait loci in cis that are asssociated with disease status and specific to retinal pigment epithelium subpopulations. Transcriptomics and proteomics approaches identify molecular pathways significantly upregulated in geographic atrophy, including in mitochondrial functions, metabolic pathways and extracellular cellular matrix reorganization. Five significant protein quantitative trait loci that regulate protein expression in the retinal pigment epithelium and in geographic atrophy are identified - two of which share variants with cis- expression quantitative trait loci, including proteins involved in mitochondrial biology and neurodegeneration. Investigation of mitochondrial metabolism confirms mitochondrial dysfunction as a core constitutive difference of the retinal pigment epithelium from patients with geographic atrophy. This study uncovers important differences in retinal pigment epithelium homeostasis associated with geographic atrophy.

History

Publication title

Nature Communications

Volume

13

Article number

4233

Number

4233

Pagination

1-18

ISSN

2041-1723

Department/School

Tasmanian School of Medicine

Publisher

Nature Pub. Group

Place of publication

London

Repository Status

  • Restricted

Socio-economic Objectives

Human pain management

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC