University of Tasmania
Browse
154235 - Genetic variation in fire recovery and other fire&%238209;related.pdf (3.9 MB)

Genetic variation in fire recovery and other fire‑related traits in a global eucalypt species

Download (3.9 MB)
To understand the potential of forests to adapt to wildfire, we studied the genetic architecture of fire-related structural, damage and recovery traits in a globally important Australian forest tree species, Eucalyptus globulus. Fourteen traits were evaluated in an outcrossed F2 population in a field trial in Tasmania, Australia, which was burnt by a wildfire 14 years after planting. The trial also included open-pollinated families of the grandparental dwarf and tall ecotypes used to produce the F2 population. We studied the phenotypic correlations within the F2 population and performed quantitative trait loci (QTL) analyses using a linkage map comprised of 472 markers. Ecotype comparisons revealed that almost all traits were under genetic control, with trees of the dwarf ecotype significantly more damaged and mainly recovering from lignotubers, whereas tall ecotype trees mainly recovered from epicormic resprouts extending for a variable height up the stem. Within the F2, tree size was negatively correlated with fire damage and positively correlated with recovery. Genetic control of fire-related traits was confirmed by the detection of 38 QTL in the F2 population. These QTL accounted for 4 to 43% of the phenotypic variation in these traits. Several QTL co-located and likely reflect pleiotropic effects. However, many independent QTL were detected, including QTL for crown consumption and trunk scorch, epicormic resprouting, resprout herbivory, and seedling establishment. The QTL detected argue that many genetically controlled mechanisms are responsible for variation in fire damage and recovery.

History

Publication title

Tree Genetics & Genomes

Volume

18

Article number

42

Number

42

Pagination

1-20

ISSN

1614-2950

Department/School

School of Natural Sciences

Publisher

Springer

Place of publication

Germany

Rights statement

This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License, (https://creativecommons.org/licenses/by/4.0/) which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

Repository Status

  • Open

Socio-economic Objectives

Ecosystem adaptation to climate change

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC