eCite Digital Repository

Population genomics of a predatory mammal reveals patterns of decline and impacts of exposure to toxic toads


von Takach, B and Ranjard, L and Burridge, CP and Cameron, SF and Cremona, T and Eldridge, MDB and Fisher, DO and Frankenberg, S and Hill, BM and Hohnen, R and Jolly, CJ and Kelly, E and Macdonald, AJ and Moussalli, A and Ottewell, K and Phillips, BL and Radford, IJ and Spencer, PBS and Trewella, GJ and Umbrello, LS and Banks, SC, Population genomics of a predatory mammal reveals patterns of decline and impacts of exposure to toxic toads, Molecular Ecology, 31, (21) pp. 5468-5486. ISSN 0962-1083 (2022) [Refereed Article]

PDF (Published Version)

Copyright Statement

2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License, (CC BY 4.0)

DOI: doi:10.1111/mec.16680


Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore. We used next generation sequencing methods to genotype 10,191 single nucleotide polymorphisms (SNPs) in 352 individuals from across a 3220-km length of the continent, investigating patterns of population genomic structure and diversity, and identifying loci showing signals of putative selection. We found strong heterogeneity in the distribution of genomic diversity across the continent, characterized by (i) biogeographical barriers driving hierarchical population structure through long-term isolation, and (ii) severe reductions in diversity resulting from population declines, exacerbated by the spread of introduced toxic cane toads (Rhinella marina). These results warn of a large ongoing loss of genomic diversity and associated adaptive capacity as mammals decline across northern Australia. Encouragingly, populations of the northern quoll established on toad-free islands by translocations appear to have maintained most of the initial genomic diversity after 16 years. By mapping patterns of genomic diversity within and among populations, and investigating these patterns in the context of population declines, we can provide conservation managers with data critical to informed decision-making. This includes the identification of populations that are candidates for genetic management, the importance of remnant island and insurance/translocated populations for the conservation of genetic diversity, and the characterization of putative evolutionarily significant units.

Item Details

Item Type:Refereed Article
Research Division:Biological Sciences
Research Group:Evolutionary biology
Research Field:Biological adaptation
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the environmental sciences
UTAS Author:Burridge, CP (Associate Professor Christopher Burridge)
ID Code:154196
Year Published:2022
Deposited By:Zoology
Deposited On:2022-11-09
Last Modified:2022-12-15

Repository Staff Only: item control page