eCite Digital Repository
Sea ice-free corridors for large swell to reach Antarctic ice shelves
Citation
Teder, NJ and Bennetts, LG and Reid, PA and Massom, RA, Sea ice-free corridors for large swell to reach Antarctic ice shelves, Environmental Research Letters, 17, (4) Article 045026. ISSN 1748-9326 (2022) [Refereed Article]
![]() | PDF (Published version) 1Mb |
Copyright Statement
© Commonwealth of Australia 2022. Original Content from this work may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence, (https://creativecommons.org/licenses/by/4.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
DOI: doi:10.1088/1748-9326/ac5edd
Abstract
Sea ice can attenuate Southern Ocean swell before it reaches Antarctic ice shelves and imposes flexural stresses, which promote calving of outer ice-shelf margins and influence ice shelf stability. An algorithm is developed to identify sea ice-free corridors that connect the open Southern Ocean to Antarctic ice shelves from daily satellite sea ice concentration data between September 1979 and August 2019. Large swell in the corridors available to impact the ice shelves is extracted from spectral wave model hindcast data. For a selection of ice shelves around the Antarctic coastline, corridors are assessed in terms of duration and areal extent. The availability of large swell to impact certain ice shelves through the corridors is evaluated from spectral wave data for daily statistical properties and the number of large swell days per year. Results integrated over a large number of ice shelves are used to assess overall trends. Large variations are found between individual ice shelves for both corridors and available swell, with contrasting trends between the West and East Antarctic Ice Sheet. The findings indicate ice shelves likely to experience prolonged periods of appreciable outer margin flexure due to large swell action, such as the Fimbul, Shackleton and Ross Ice Shelves, which could exacerbate climate-driven weakening and decreasing buttressing capacity, with implications for sea-level rise.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | Antarctic ice shelves, ocean hindcast, swell-ice shelves interactions, sea ice-free corridors, sea ice concentration |
Research Division: | Environmental Sciences |
Research Group: | Other environmental sciences |
Research Field: | Other environmental sciences not elsewhere classified |
Objective Division: | Environmental Management |
Objective Group: | Other environmental management |
Objective Field: | Other environmental management not elsewhere classified |
UTAS Author: | Reid, PA (Dr Phillip Reid) |
UTAS Author: | Massom, RA (Dr Robert Massom) |
ID Code: | 154019 |
Year Published: | 2022 |
Web of Science® Times Cited: | 1 |
Deposited By: | Australian Antarctic Program Partnership |
Deposited On: | 2022-10-24 |
Last Modified: | 2022-11-30 |
Downloads: | 1 View Download Statistics |
Repository Staff Only: item control page