University of Tasmania
Browse
153064 - Comparative analysis of root.pdf (2.92 MB)

Comparative analysis of root Na+ relation under salinity between Oryza sativa and Oryza coarctata

Download (2.92 MB)
journal contribution
posted on 2023-05-21, 13:22 authored by Ishikawa, T, Svetlana ShabalaSvetlana Shabala, Meixue ZhouMeixue Zhou, Venkataraman, G, Yu, M, Sellamuthu, G, Chen, ZH, Sergey ShabalaSergey Shabala
Na+ toxicity is one of the major physiological constraints imposed by salinity on plant performance. At the same time, Na+ uptake may be beneficial under some circumstances as an easily accessible inorganic ion that can be used for increasing solute concentrations and maintaining cell turgor. Two rice species, Oryza sativa (cultivated rice, salt-sensitive) and Oryza coarctata (wild rice, salt-tolerant), demonstrated different strategies in controlling Na+ uptake. Glasshouse experiments and gene expression analysis suggested that salt-treated wild rice quickly increased xylem Na+ loading for osmotic adjustment but maintained a non-toxic level of stable shoot Na+ concentration by increased activity of a high affinity K+ transporter HKT1;5 (essential for xylem Na+ unloading) and a Na+/H+ exchanger NHX (for sequestering Na+ and K+ into root vacuoles). Cultivated rice prevented Na+ uptake and transport to the shoot at the beginning of salt treatment but failed to maintain it in the long term. While electrophysiological assays revealed greater net Na+ uptake upon salt application in cultivated rice, O. sativa plants showed much stronger activation of the root plasma membrane Na+/H+ Salt Overly Sensitive 1 (SOS1) exchanger. Thus, it appears that wild rice limits passive Na+ entry into root cells while cultivated rice relies heavily on SOS1-mediating Na+ exclusion, with major penalties imposed by the existence of the "futile cycle" at the plasma membrane.

History

Publication title

Plants

Volume

11

Issue

5

Article number

656

Number

656

Pagination

1-17

ISSN

2223-7747

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

MDPI AG

Place of publication

Switzerland

Rights statement

Copyright 2022 by the authors.Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).

Repository Status

  • Open

Socio-economic Objectives

Rice

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC