University of Tasmania
Browse
152832 - Disruption of metapopulation structure reduces Tasmanian devil facial.pdf (9.02 MB)

Disruption of metapopulation structure reduces Tasmanian devil facial tumour disease spread at the expense of abundance and genetic diversity

Download (9.02 MB)
journal contribution
posted on 2023-05-21, 12:56 authored by Durrant, R, Rodrigo Hamede RossRodrigo Hamede Ross, Wells, K, Lurgi, M
Metapopulation structure plays a fundamental role in the persistence of wildlife populations. It can also drive the spread of infectious diseases and transmissible cancers such as the Tasmanian devil facial tumour disease (DFTD). While disrupting this structure can reduce disease spread, it can also impair host resilience by disrupting gene flow and colonisation dynamics. Using an individual-based metapopulation model we investigated the synergistic effects of host dispersal, disease transmission rate and inter-individual contact distance for transmission, on the spread and persistence of DFTD from local to regional scales. Disease spread, and the ensuing population declines, are synergistically determined by individuals' dispersal, disease transmission rate and within-population mixing. Transmission rates can be magnified by high dispersal and inter-individual transmission distance. The isolation of local populations effectively reduced metapopulation-level disease prevalence but caused severe declines in metapopulation size and genetic diversity. The relative position of managed (i.e., isolated) local populations had a significant effect on disease prevalence, highlighting the importance of considering metapopulation structure when implementing metapopulation-scale disease control measures. Our findings suggest that population isolation is not an ideal management method for preventing disease spread in species inhabiting already fragmented landscapes, where genetic diversity and extinction risk are already a concern.

History

Publication title

Pathogens

Volume

10

Issue

12

Article number

1592

Number

1592

Pagination

1-16

ISSN

2076-0817

Department/School

School of Natural Sciences

Publisher

MDPIAG

Place of publication

Switzerland

Rights statement

Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/)

Repository Status

  • Open

Socio-economic Objectives

Control of pests, diseases and exotic species in terrestrial environments

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC