University of Tasmania
Browse

File(s) under permanent embargo

Small-scale structure traced by neutral hydrogen absorption in the direction of multiple-component radio continuum sources

journal contribution
posted on 2023-05-21, 12:52 authored by Rybarczyk, DR, Stanimirovic, S, Zweibel, EG, Murray, CE, John DickeyJohn Dickey, Babler, B, Heiles, C
We have studied the small-scale distribution of atomic hydrogen (H i) using 21 cm absorption spectra against multiple-component background radio continuum sources from the 21-SPONGE survey and the Millennium Arecibo Absorption-Line Survey. We have found >5 sigma optical depth variations at a level of similar to 0.03-0.5 between 13 out of 14 adjacent sightlines separated by a few arcseconds to a few arcminutes, suggesting the presence of neutral structures on spatial scales from a few to thousands of au (which we refer to as tiny-scale atomic structure, TSAS). The optical depth variations are strongest in directions where the H i column density and the fraction of H i in the cold neutral medium (CNM) are highest, which tend to be at low Galactic latitudes. By measuring changes in the properties of Gaussian components fitted to the absorption spectra, we find that changes in both the peak optical depth and the linewidth of TSAS absorption features contribute to the observed optical depth variations, while changes in the central velocity do not appear to strongly impact the observed variations. Both thermal and turbulent motions contribute appreciably to the linewidths, but the turbulence does not appear strong enough to confine overpressured TSAS. In a majority of cases, the TSAS column densities are sufficiently high that these structures can radiatively cool fast enough to maintain thermal equilibrium with their surroundings, even if they are overpressured. We also find that a majority of TSAS is associated with the CNM. For TSAS in the direction of the Taurus molecular cloud and the local Leo cold cloud, we estimate densities over an order of magnitude higher than typical CNM densities.

History

Publication title

Astrophysical Journal

Volume

893

Pagination

1-21

ISSN

0004-637X

Department/School

School of Natural Sciences

Publisher

Institute of Physics Publishing, Inc

Place of publication

United States

Rights statement

© 2020. The American Astronomical Society. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences; Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC