University of Tasmania
Browse
modelling-the-influence-of-marine-ice-on-the-dynamics-of-an-idealised-ice-shelf.pdf (2.43 MB)

Modelling the influence of marine ice on the dynamics of an idealised ice shelf

Download (2.43 MB)
Version 2 2023-09-27, 02:33
Version 1 2023-05-21, 12:21
journal contribution
posted on 2023-09-27, 02:33 authored by Lisa CrawLisa Craw, McCormack, FS, Susan CookSusan Cook, Jason RobertsJason Roberts, Adam TreverrowAdam Treverrow
Understanding the dynamic behaviour of ice shelves, specifically the controls on their ability to buttress the flow of ice into the ocean, is critical for predicting future ice-sheet contributions to sea level rise. Many large ice shelves, which are predominantly composed of meteoric ice, have a basal layer of marine ice (formed from accumulated platelets at the ice-ocean interface), comprising up to 40% of their thickness locally. Differences in temperature, chemistry and microstructure between marine and meteoric ice mean the rheological properties of the ice vary throughout the ice shelf. These differences are not explicitly accounted for in ice-sheet modelling applications, and may have an important influence on ice shelf dynamics. We tested the sensitivity of a model of an idealised ice shelf to variations in temperature distribution and flow enhancement, and found that incorporating a realistic thermal profile (where the marine ice layer is isothermal) had an order of magnitude greater effect on ice mass flux and thinning than incorporating the mechanical properties of the marine ice. The presence of marine ice at the ice shelf base has the potential to significantly increase deviatoric stresses at the surface and ice mass flux across the front of an ice shelf.

History

Publication title

Journal of Glaciology

Volume

69

Issue

274

Pagination

342-352

ISSN

0022-1430

Department/School

Institute for Marine and Antarctic Studies

Publisher

Int Glaciol Soc

Place of publication

Lensfield Rd, Cambridge, England, Cb2 1Er

Rights statement

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Socio-economic Objectives

Antarctic and Southern Ocean ice dynamics

Usage metrics

    University Of Tasmania

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC