University of Tasmania
Browse

File(s) under permanent embargo

Assessing hydrothermal alteration intensity in volcanic-hosted massive sulfide systems using portable x-ray fluorescence analysis of drill core: An example from myra falls, Canada

journal contribution
posted on 2023-05-21, 11:43 authored by McNulty, B, Fox, N, John GemmellJohn Gemmell

Current portable X-ray fluorescence (pXRF) technology can rapidly and inexpensively yield concentrations of geologically significant elements, typically with instrument detection limits below several tens of parts per million. Based on conventional XRF whole-rock geochemical data, both the Ishikawa alteration index and the chlorite-carbonate-pyrite index increase with proximity to sulfide mineralization at Myra Falls. However, available pXRF technology is typically unable to detect all the elements required to calculate these alteration indices. As a result, there is a need to utilize the elements that are readily detectable using pXRF and apply these to hydrothermal alteration assessment.

We propose that Rb/Sr ratios provide a robust proxy for the Ishikawa alteration index and demonstrate that conventional whole-rock XRF analytical results for Rb and Sr can be reproduced using pXRF analysis from drill core surfaces. At Myra Falls, the Rb/Sr ratios vary from <0.1 for least altered rocks, 0.1 to 0.5 for weakly altered rocks, 0.5 to 1.0 for moderately altered rocks, 1.0 to 2.0 for strongly altered rocks, and >2.0 for intensely altered rocks. Downhole profiles of alteration intensity generated from systematic pXRF analysis of drill core surfaces can be used to inform drilling and targeting decisions. The application of the Rb/Sr ratio as a proxy for alteration intensity extends beyond this case study and can be applied to other hydrothermal systems that produce phyllosilicate minerals as alteration products of feldspar.

History

Publication title

Economic Geology

Volume

115

Pagination

443-453

ISSN

0361-0128

Department/School

School of Natural Sciences

Publisher

Economic Geology Publ Co

Place of publication

5808 South Rapp St, Ste 209, Littleton, USA, Co, 80120-1942

Rights statement

©2020 Society of Economic Geologists, Inc

Repository Status

  • Restricted

Socio-economic Objectives

Precious (noble) metal ore exploration; Other mineral resources (excl. energy resources) not elsewhere classified; Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC