eCite Digital Repository

Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run


Abbott, BP and Abbott, R and Siellez, K and Zweizig, J, LIGO Scientific Collaboration and Virgo Collaboration, Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run, Physical Review Letters, 118, (12) Article 121102. ISSN 0031-9007 (2017) [Refereed Article]

Not available

DOI: doi:10.1103/PhysRevLett.118.121102


We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fa,O(f) < (0.1-56)x10-8erg cm-2s-1Hz-1(f/25 Hz)a-1 depending on the sky location O and the spectral power index a. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of ?(f,O) < (0.39-7.6)x10-8sr-1(f/25 Hz)a depending on O and a. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0 < (6.7, 5.5, and 7.0)x10-25, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

Item Details

Item Type:Refereed Article
Keywords:Persistent gravitational waves, Advanced LIGO, Gravitational waves, radiometry
Research Division:Physical Sciences
Research Group:Astronomical sciences
Research Field:General relativity and gravitational waves
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the physical sciences
UTAS Author:Siellez, K (Dr Karelle Siellez)
ID Code:152127
Year Published:2017
Web of Science® Times Cited:73
Deposited By:Physics
Deposited On:2022-08-11
Last Modified:2022-09-21

Repository Staff Only: item control page