eCite Digital Repository

Understanding the gastrointestinal physiology and responses to feeding in air-breathing Anabantiform fishes

Citation

Goodrich, HR and Bayley, M and Birgersson, L and Davison, WG and Johannsson, OE and Kim, AB and My, PL and Tinh, TH and Thanh, PN and Thanh, HDT and Wood, CM, Understanding the gastrointestinal physiology and responses to feeding in air-breathing Anabantiform fishes, Journal of Fish Biology, 96, (4) pp. 986-1003. ISSN 0022-1112 (2020) [Refereed Article]


Preview
PDF
Pending copyright assessment - Request a copy
2Mb
  

DOI: doi:10.1111/jfb.14288

Abstract

The Mekong Delta is host to a large number of freshwater species, including a unique group of facultative air-breathing Anabantiforms. Of these, the striped snakehead (Channa striata), the climbing perch (Anabas testudineus), the giant gourami (Osphronemus goramy) and the snakeskin gourami (Trichogaster pectoralis) are major contributors to aquaculture production in Vietnam. The gastrointestinal responses to feeding in these four species are detailed here. Relative intestinal length was lowest in the snakehead, indicating carnivory, and 5.5-fold greater in the snakeskin, indicating herbivory; climbing perch and giant gourami were intermediate, indicating omnivory. N-waste excretion (ammonia-N + urea-N) was greatest in the carnivorous snakehead and least in the herbivorous snakeskin, whereas the opposite trend was observed for net K+ excretion. Similarly, the more carnivorous species had a greater stomach acidity than the more herbivorous species. Measurements of acid–base flux to water indicated that the greatest postprandial alkaline tide occurred in the snakehead and a potential acidic tide in the snakeskin. Additional findings of interest were high levels of both PCO2 (up to 40 mmHg) and HCO3 (up to 33 mM) in the intestinal chyme of all four of these air-breathing species. Using in vitro gut sac preparations of the climbing perch, it was shown that the intestinal net absorption of fluid, Na+ and HCO3 was upregulated by feeding but not net Cl uptake, glucose uptake or K+ secretion. Upregulated net absorption of HCO3 suggests that the high chyme (HCO3) does not result from secretion by the intestinal epithelium. The possibility of ventilatory control of PCO2 to regulate postprandial acid–base balance in these air-breathing fish is discussed.

Item Details

Item Type:Refereed Article
Keywords:digestive physiology, air-breathing fish, aquaculture, gastrointestinal physiology
Research Division:Biological Sciences
Research Group:Ecology
Research Field:Ecological physiology
Objective Division:Animal Production and Animal Primary Products
Objective Group:Fisheries - aquaculture
Objective Field:Aquaculture fin fish (excl. tuna)
UTAS Author:Goodrich, HR (Dr Harriet Goodrich)
ID Code:152118
Year Published:2020
Web of Science® Times Cited:3
Deposited By:Fisheries and Aquaculture
Deposited On:2022-08-11
Last Modified:2022-08-25
Downloads:0

Repository Staff Only: item control page