eCite Digital Repository

Upper limits on gravitational waves from Scorpius X-1 from a model-based cross-correlation search in Advanced LIGO data

Citation

Abbott, BP and Abbott, R and Siellez, K and Zweizig, J and Steeghs, D and Wang, L, LIGO Scientific Collaboration and Virgo Collaboration, Upper limits on gravitational waves from Scorpius X-1 from a model-based cross-correlation search in Advanced LIGO data, The Astrophysical Journal: An International Review of Astronomy and Astronomical Physics, 847 Article 47. ISSN 0004-637X (2017) [Refereed Article]


Preview
PDF (Published version)
2Mb
  

Copyright Statement

© 2017. The American Astronomical Society. All rights reserved. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 Attribution 3.0 Unported (CC BY 3.0) licence, https://creativecommons.org/licenses/by/3.0/. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

DOI: doi:10.3847/1538-4357/aa86f0

Abstract

We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range 25-2000 Hz, spanning the current observationally constrained range of binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175 Hz, with comparable limits set across the most sensitive frequency range from 100 to 200 Hz. At this frequency, the 95% upper limit on the signal amplitude h0 is 2.3 x 10-25 marginalized over the unknown inclination angle of the neutron star’s spin, and 8.0 x 10-26 assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3-4 stronger than those set by other analyses of the same data, and a factor of ∼7 stronger than the best upper limits set using data from Initial LIGO science runs. In the vicinity of 100 Hz, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on the inclination angle; if the most likely inclination angle of 44° is assumed, they are within a factor of 1.7.

Item Details

Item Type:Refereed Article
Keywords:accretion disks, gravitational waves, neutron stars, binary, x-rays
Research Division:Physical Sciences
Research Group:Astronomical sciences
Research Field:General relativity and gravitational waves
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the physical sciences
UTAS Author:Siellez, K (Dr Karelle Siellez)
ID Code:152059
Year Published:2017
Web of Science® Times Cited:39
Deposited By:Physics
Deposited On:2022-08-10
Last Modified:2022-11-21
Downloads:3 View Download Statistics

Repository Staff Only: item control page