University of Tasmania
Browse

File(s) under permanent embargo

Advances in Automated Piston Liquid-Liquid Microextraction Technique

journal contribution
posted on 2023-05-21, 10:19 authored by Gras, R, Liu, G, Robert ShellieRobert Shellie, Hua, Y, Luong, J
A new automated micro liquid-liquid extraction technique was successfully developed. This novel syringe-based technique capitalizes on the advantages of vigorous fluid agitation and the shearing effect of two fluids with different properties to achieve high extraction efficiency. The technique is at least 20 times faster than mechanical shaking or sonication in achieving a similar recovery even with a hydrophilic probe molecule such as 1,4-dioxane in an aqueous medium. Excellent repeatability with a relative standard deviation as low as 0.56% over a five-day test, n = 2 per day, was demonstrated with 1,4-dioxane. Other model compounds in aqueous matrices evaluated, including phenolics and extraction solvents like chloroform and hexane, showed similar performance in repeatability. An added advantage of this technique involves performing multiple extractions. Its capabilities in conducting complicated extraction steps and minimizing the use of organic solvents as low as 200 µL to achieve a preconcentration effect were demonstrated. The technique is suitable for use with emulsion-forming samples without further sample manipulation by incorporating a demulsifier such as acetone during the extraction process. The technique was found to be efficient and environmentally friendly with low solvent waste. This technique is ideal for implementation in automated high throughput and cost-effective quality assurance laboratory environments.

History

Publication title

Journal of Chromatography A

Volume

1651

Article number

462330

Number

462330

Pagination

1-9

ISSN

0021-9673

Department/School

School of Natural Sciences

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

© 2021 Elsevier B.V. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC