eCite Digital Repository
Phosphorus diffused LPCVD polysilicon passivated contacts with in-situ low pressure oxidation
Citation
Fong, KC and Ko, TC and Liang, WS and Chong, TK and Ernst, M and Walter, D and Stocks, M and Franklin, E and McIntosh, K and Blakers, A, Phosphorus diffused LPCVD polysilicon passivated contacts with in-situ low pressure oxidation, Solar Energy Materials & Solar Cells, 186 pp. 236-242. ISSN 0927-0248 (2018) [Refereed Article]
Copyright Statement
© 2018 Elsevier B.V.
Abstract
As silicon photovoltaic technology advances, charge carrier losses at the contacted interfaces of the silicon absorber are coming to dominate power conversion efficiency. The so-called passivated contact, which provides selective charge-carrier extraction while simultaneously reducing interface recombination, is thus of significant interest for next-generation silicon solar cells. However, achieving both low recombination and low resistance to charge carrier extraction has proven challenging. Here, we present a passivated contact technology based on polysilicon deposited using low pressure chemical vapour deposition (LPCVD) over an ultra-thin silicon dioxide layer, which achieves an excellent surface passivation with implied open-circuit voltage of 735 mV, a recombination prefactor below 1 fA cm−2 and contact resistivity below 1 mΩ cm2.
Key to this technology is the deposition of an ultra-thin silicon dioxide interlayer under high temperature and low pressure condition, performed in-situ within a single process with the polysilicon deposition. Additionally, the passivating contact structure maintains its electronic properties at temperatures of up to 900 °C and is compatible with existing industrial processes. The presented work therefore represents a significant advancement in industrially-applicable passivated contact technology.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | Passivated contacts, polysilicon, tunnel oxide, LPCVD, solar cells, contact resistivity |
Research Division: | Engineering |
Research Group: | Electrical engineering |
Research Field: | Photovoltaic power systems |
Objective Division: | Energy |
Objective Group: | Renewable energy |
Objective Field: | Solar-photovoltaic energy |
UTAS Author: | Franklin, E (Associate Professor Evan Franklin) |
ID Code: | 151353 |
Year Published: | 2018 |
Deposited By: | Engineering |
Deposited On: | 2022-07-27 |
Last Modified: | 2022-11-10 |
Downloads: | 0 |
Repository Staff Only: item control page