University of Tasmania
Browse

File(s) under permanent embargo

Seeking natural analogs to fast-forward the assessment of marine CO2 removal

journal contribution
posted on 2023-05-21, 09:52 authored by Lennart BachLennart Bach, Philip BoydPhilip Boyd
Mitigating global climate change will require gigaton-scale carbon dioxide removal (CDR) as a supplement to rapid emissions reduction. The oceans cover 71% of the Earth surface and have the potential to provide much of the required CDR. However, none of the proposed marine CDR (mCDR) methods is sufficiently well understood to determine their real-world efficiency and environmental side effects. Here, we argue that using natural mCDR analogs should become the third interconnecting pillar in the mCDR assessment as they bridge the gap between numerical simulations (i.e., large scale/reduced complexity) and experimental studies (i.e., small scale/high complexity). Natural mCDR analogs occur at no cost, can provide a wealth of data to inform mCDR, and do not require legal permission or social license for their study. We propose four simple criteria to identify particularly useful analogs: 1) large scale, 2) abruptness of perturbation, 3) availability of unperturbed control sites, and 4) reoccurrence. Based on these criteria, we highlight four examples: 1) equatorial upwelling as a natural analog for artificial upwelling, 2) downstream of Kerguelen Island for ocean iron fertilization, 3) the Black and Caspian Seas for ocean alkalinity enhancement, and 4) the Great Atlantic Sargassum Belt for ocean afforestation. These natural analogs provide a reality check for experimental assessments and numerical modeling of mCDR. Ultimately, projections of mCDR efficacy and sustainability supported by observations from natural analogs will provide the real-world context for the public debate and will facilitate political decisions on mCDR implementation. We anticipate that a rigorous investigation of natural analogs will fast-forward the urgently needed assessment of mCDR.

History

Publication title

Proceedings of the National Academy of Sciences of the United States of America

Volume

118

Issue

40

Article number

e2106147118

Number

e2106147118

Pagination

1-8

ISSN

0027-8424

Department/School

Institute for Marine and Antarctic Studies

Publisher

Natl Acad Sciences

Place of publication

2101 Constitution Ave Nw, Washington, USA, Dc, 20418

Rights statement

Copyright 2021 the authors.

Repository Status

  • Restricted

Socio-economic Objectives

Mitigation of climate change not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC