eCite Digital Repository

Proto Kranz-like leaf traits and cellular ionic regulation are associated with salinity tolerance in a halophytic wild rice


Yong, MT and Solis, CA and Amatoury, S and Sellamuthu, G and Rajakani, R and Mak, M and Venkataraman, G and Shabala, L and Zhou, M and Ghannoum, O and Holford, P and Huda, S and Shabala, SN and Chen, ZH, Proto Kranz-like leaf traits and cellular ionic regulation are associated with salinity tolerance in a halophytic wild rice, Stress Biology, 2 Article 8. ISSN 2731-0450 (2022) [Refereed Article]

Pending copyright assessment - Request a copy


Species of wild rice (Oryza spp.) possess a wide range of stress tolerance traits that can be potentially utilized in breeding climate-resilient cultivated rice cultivars (Oryza sativa) thereby aiding global food security. In this study, we conducted a greenhouse trial to evaluate the salinity tolerance of six wild rice species, one cultivated rice cultivar (IR64) and one landrace (Pokkali) using a range of electrophysiological, imaging, and whole-plant physiological techniques. Three wild species (O. latifolia, O. officinalis and O. coarctata) were found to possess superior salinity stress tolerance. The underlying mechanisms, however, were strikingly different. Na+ accumulation in leaves of O. latifolia, O. officinalis and O. coarctata were significantly higher than the tolerant landrace, Pokkali. Na+ accumulation in mesophyll cells was only observed in O. coarctata, suggesting that O. officinalis and O. latifolia avoid Na+ accumulation in mesophyll by allocating Na+ to other parts of the leaf. The finding also suggests that O. coarctata might be able to employ Na+ as osmolyte without affecting its growth. Further study of Na+ allocation in leaves will be helpful to understand the mechanisms of Na+ accumulation in these species. In addition, O. coarctata showed Proto Kranz-like leaf anatomy (enlarged bundle sheath cells and lower numbers of mesophyll cells), and higher expression of C4-related genes (e.g., NADPME, PPDK) and was a clear outlier with respect to salinity tolerance among the studied wild and cultivated Oryza species. The unique phylogenetic relationship of O. coarctata with C4 grasses suggests the potential of this species for breeding rice with high photosynthetic rate under salinity stress in the future.

Item Details

Item Type:Refereed Article
Keywords:rice, salinity, gas exchange, gene expression, ion flux, Na+ imaging, oryza sativa, oryza coarctata
Research Division:Agricultural, Veterinary and Food Sciences
Research Group:Crop and pasture production
Research Field:Agrochemicals and biocides (incl. application)
Objective Division:Plant Production and Plant Primary Products
Objective Group:Grains and seeds
Objective Field:Rice
UTAS Author:Solis, CA (Ms Celymar Solis)
UTAS Author:Shabala, L (Associate Professor Lana Shabala)
UTAS Author:Zhou, M (Professor Meixue Zhou)
UTAS Author:Shabala, SN (Professor Sergey Shabala)
ID Code:151256
Year Published:2022
Deposited By:TIA - Research Institute
Deposited On:2022-07-26
Last Modified:2022-09-05

Repository Staff Only: item control page