eCite Digital Repository

Performance evaluation of a solar powered solid desiccant evaporative cooling system with different recirculation air ratios


Lai, L and Wang, X and Kefayati, G and Hu, E, Performance evaluation of a solar powered solid desiccant evaporative cooling system with different recirculation air ratios, Energy and Buildings, 270 Article 112273. ISSN 0378-7788 (2022) [Refereed Article]

Pending copyright assessment - Request a copy

DOI: doi:10.1016/j.enbuild.2022.112273


The evaporative cooling technology (ECT) has been regarded as an effective alternative to conventional vapour compression systems due to its energy saving and eco-friendly features. Moreover, when integrating with a solid desiccant unit, ECT can further extend its application in hot and humid environments. This paper proposed and evaluated a solar-assisted solid desiccant Maisotsenko cycle (M−cycle) based indirect evaporative cooling (IEC) system with different recirculation air ratios. Three other cooling systems, including stand-alone Direct Evaporative Cooling (DEC), stand-alone M−cycle IEC, and conventional solid desiccant evaporative cooling system (SD-DEC), were also simulated and compared with the proposed system under various ambient conditions. These systems were assessed in terms of supply air temperature, indoor relative humidity ratio, water consumption rate, coefficient of performance (COP) and solar fraction in this study. A case study of the proposed system was carried out under two typical Australian climates, Darwin and Melbourne. The results indicated that the solar-assisted solid desiccant cooling system integrated with M−cycle IEC had the best cooling performance compared with the other three systems, particularly in hot and humid areas. When increasing the recirculation air ratios from 0% to 60%, a maximum reduction of 23.1% and 41.9% could be observed in the systemís supply air temperature and humidity ratio, respectively. The highest COP was 0.89 when the inlet air temperature was 30 įC, and the COP value would vary as the inlet air temperature and humidity ratio increased. However, a higher water consumption rate was also observed, 31.36% to 57.94% more water would be consumed. This indicates that it requires selecting a proper recirculation air ratio for different climates to achieve the best performance.

Item Details

Item Type:Refereed Article
Keywords:evaporative cooling technology, indirect evaporative cooling, solid desiccant, air-conditioning, TRNSYS, cooling performance
Research Division:Engineering
Research Group:Mechanical engineering
Research Field:Energy generation, conversion and storage (excl. chemical and electrical)
Objective Division:Energy
Objective Group:Energy storage, distribution and supply
Objective Field:Energy systems and analysis
UTAS Author:Lai, L (Mr Lanbo Lai)
UTAS Author:Wang, X (Professor Xiaolin Wang)
UTAS Author:Kefayati, G (Dr Gholamreza Kefayati)
ID Code:150798
Year Published:2022
Deposited By:Engineering
Deposited On:2022-06-30
Last Modified:2022-07-26

Repository Staff Only: item control page