University of Tasmania
Browse
150747 - Practical efficient regional land-use planning using constrained.pdf (6.11 MB)

Practical efficient regional land-use planning using constrained multi-objective genetic algorithm optimization

Download (6.11 MB)
journal contribution
posted on 2023-05-21, 08:58 authored by Pan, T, Zhang, Y, Su, F, Vincent LyneVincent Lyne, Cheng, F, Xiao, H
Practical efficient regional land-use planning requires planners to balance competing uses, regional policies, spatial compatibilities, and priorities across the social, economic, and ecological domains. Genetic algorithm optimization has progressed complex planning, but challenges remain in developing practical alternatives to random initialization, genetic mutations, and to pragmatically balance competing objectives. To meet these practical needs, we developed a Land use Intensity-restricted Multi-objective Spatial Optimization (LIr-MSO) model with more realistic patch size initialization, novel mutation, elite strategies, and objectives balanced via nominalizations and weightings. We tested the model for Dapeng, China where experiments compared comprehensive fitness (across conversion cost, Gross Domestic Product (GDP), ecosystem services value, compactness, and conflict degree) with three contrast experiments, in which changes were separately made in the initialization and mutation. The comprehensive model gave superior fitness compared to the contrast experiments. Iterations progressed rapidly to near-optimality, but final convergence involved much slower parent-offspring mutations. Tradeoffs between conversion cost and compactness were strongest, and conflict degree improved in part as an emergent property of the spatial social connectedness built into our algorithm. Observations of rapid iteration to near-optimality with our model can facilitate interactive simulations, not possible with current models, involving land-use planners and regional managers.

History

Publication title

ISPRS International Journal of Geo-Information

Volume

10

Article number

100

Number

100

Pagination

1-21

ISSN

2220-9964

Department/School

Institute for Marine and Antarctic Studies

Publisher

MDPIAG

Place of publication

Switzerland

Rights statement

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons 4.0 International (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/).

Repository Status

  • Open

Socio-economic Objectives

Evaluation, allocation, and impacts of land use

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC