University of Tasmania
Browse
150278 - Tracking Southern Ocean sea ice extent with winter water.pdf (1.12 MB)

Tracking Southern Ocean sea ice extent with winter water: a new method based on the oxygen isotopic signature of foraminifera

Download (1.12 MB)
journal contribution
posted on 2023-05-21, 08:06 authored by Lund, DC, Zanna ChaseZanna Chase, Kohfeld, KE, Wilson, EA

Southern Ocean sea ice plays a central role in the oceanic meridional overturning circulation, transforming globally prevalent watermasses through surface buoyancy loss and gain. Buoyancy loss due to surface cooling and sea ice growth promotes the formation of bottom water that flows into the Atlantic, Indian, and Pacific basins, while buoyancy gain due to sea ice melt helps transform the returning deep flow into intermediate and mode waters. Because northward expansion of Southern Ocean sea ice during the Last Glacial Maximum (LGM; 19–23 kyr BP) may have enhanced deep ocean stratification and contributed to lower atmospheric CO2 levels, reconstructions of sea ice extent are critical to understanding the LGM climate state. Here, we present a new sea ice proxy based on the 18O/16O ratio of foraminifera (δ18Oc). In the seasonal sea ice zone, sea ice formation during austral winter creates a cold surface mixed layer that persists in the sub-surface during spring and summer. The cold sub-surface layer, known as winter water, sits above relatively warm deep water, creating an inverted temperature profile. The unique surface-to-deep temperature contrast is reflected in estimates of equilibrium δ18Oc, implying that paired analysis of planktonic and benthic foraminifera can be used to infer sea ice extent. To demonstrate the feasibility of the δ18Oc method, we present a compilation of N. pachyderma and Cibicidoides spp. results from the Atlantic sector that yields an estimate of winter sea ice extent consistent with modern observations.

Funding

Australian Research Council

History

Publication title

Paleoceanography and Paleoclimatology

Volume

36

Issue

6

Article number

e2020PA004095

Number

e2020PA004095

Pagination

1-17

ISSN

2572-4517

Department/School

Institute for Marine and Antarctic Studies

Publisher

Wiley-Blackwell Publishing Inc.

Place of publication

United States

Rights statement

© 2021. American Geophysical Union. All Rights Reserved.

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC