University of Tasmania
Browse
150277 - Southern Ocean ecosystem response to Last Glacial Maximum.pdf (2.63 MB)

Southern Ocean ecosystem response to Last Glacial Maximum boundary conditions

Download (2.63 MB)
journal contribution
posted on 2023-05-21, 08:06 authored by Saini, H, Kvale, K, Zanna ChaseZanna Chase, Kohfeld, KE, Meissner, KJ, Menviel, L

Phytoplankton exert a significant control on the marine carbon cycle and can thus impact atmospheric CO2 concentration. Here we use a new ecosystem model to analyze the response of diatoms and coccolithophores in the Southern Ocean to Last Glacial Maximum (LGM) climate conditions, and changes in aeolian iron (Fe) input in the Southern Ocean. We find that LGM climate conditions without changes in Fe input lead to a large increase in diatoms north of the winter sea ice edge in the South Atlantic (19%) and the South Pacific (26%), and a 31% and 9% increase within the seasonal sea-ice zone in the South Atlantic and Indian oceans, respectively, while diatoms decrease in the Ross and Weddell Seas, and in the South Pacific (62%) south of the winter sea ice edge. Coccolithophores increase by 11% in the South West Atlantic near 45°S but are outcompeted by diatoms within the seasonal sea-ice zone, where they decrease by 21%. Overall, this results in a 11% decrease in Southern Ocean net primary productivity (NPP) and a 2.4% decrease in export production (EP). A series of sensitivity experiments with different aeolian Fe input are compared to available paleo-proxy records. The best fit is obtained for a simulation forced with dust fluxes from Lambert et al. (2015), https://doi.org/10.1002/2015gl064250 and reduced Antarctic Bottom Water formation in the Weddell Sea. The 78% increase in aeolian Fe input in the Southern Ocean in this simulation increases the Southern Ocean EP by 4.4%, while NPP remains 8.7% weaker compared to preindustrial.

Funding

Australian Research Council

History

Publication title

Paleoceanography and Paleoclimatology

Volume

36

Issue

7

Article number

e2020PA004075

Number

e2020PA004075

Pagination

1-15

ISSN

2572-4517

Department/School

Institute for Marine and Antarctic Studies

Publisher

Wiley-Blackwell Publishing Inc.

Place of publication

United States

Rights statement

© 2021. American Geophysical Union. All Rights Reserved.

Repository Status

  • Open

Socio-economic Objectives

Climate change models; Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC