eCite Digital Repository

Impacts of 'supermoon' events on the physiology of a wild bird

Citation

Portugal, SJ and White, CR and Frappell, PB and Green, JA and Butler, PJ, Impacts of 'supermoon' events on the physiology of a wild bird, Ecology and Evolution, 9, (14) pp. 7974-7984. ISSN 2045-7758 (2019) [Refereed Article]


Preview
PDF
Pending copyright assessment - Request a copy
994Kb
  

DOI: doi:10.1002/ece3.5311

Abstract

The position of the Moon in relation to the Earth and the Sun gives rise to several predictable cycles, and natural changes in nighttime light intensity are known to cause alterations to physiological processes and behaviors in many animals. The limited research undertaken to date on the physiological responses of animals to the lunar illumination has exclusively focused on the synodic lunar cycle (full moon to full moon, or moon phase) but the moon's orbit—its distance from the Earth—may also be relevant. Every month, the moon moves from apogee, its most distant point from Earth—and then to perigee, its closest point to Earth. Here, we studied wild barnacle geese (Branta leucopsis) to investigate the influence of multiple interacting lunar cycles on the physiology of diurnally active animals. Our study, which uses biologging technology to continually monitor body temperature and heart rate for an entire annual cycle, asks whether there is evidence for a physiological response to natural cycles in lunar brightness in wild birds, particularly "supermoon" phenomena, where perigee coincides with a full moon. There was a three-way interaction between lunar phase, lunar distance, and cloud cover as predictors of nighttime mean body temperature, such that body temperature was highest on clear nights when the full moon coincided with perigee moon. Our study is the first to report the physiological responses of wild birds to "supermoon" events; the wild geese responded to the combination of two independent lunar cycles, by significantly increasing their body temperature at night. That wild birds respond to natural fluctuations in nighttime ambient light levels support the documented responses of many species to anthropogenic sources of artificial light, that birds seem unable to override. As most biological systems are arguably organized foremost by light, this suggests that any interactions between lunar cycles and local weather conditions could have significant impacts on the energy budgets of birds.

Item Details

Item Type:Refereed Article
Keywords:circadian, energy expenditure, lunar cycles, supermoon
Research Division:Biological Sciences
Research Group:Ecology
Research Field:Ecological physiology
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the biological sciences
UTAS Author:Frappell, PB (Professor Peter Frappell)
ID Code:150269
Year Published:2019
Web of Science® Times Cited:9
Deposited By:Ecology and Biodiversity
Deposited On:2022-06-06
Last Modified:2022-06-06
Downloads:0

Repository Staff Only: item control page