University of Tasmania
Browse
150146 - A three-way balance in the Beaufort Gyre.pdf (3.84 MB)

A three-way balance in the Beaufort Gyre: the ice-ocean governor, wind stress, and eddy diffusivity

Download (3.84 MB)
journal contribution
posted on 2023-05-21, 07:49 authored by Edward DoddridgeEdward Doddridge, Meneghello, G, Marshall, J, Scott, J, Lique, C
The Beaufort Gyre (BG) is a large anticyclonic circulation in the Arctic Ocean. Its strength is directly related to the halocline depth, and therefore also to the storage of freshwater. It has recently been proposed that the equilibrium state of the BG is set by the Ice-Ocean Governor, a negative feedback between surface currents and ice-ocean stress, rather than a balance between lateral mesoscale eddy fluxes and surface Ekman pumping. However, mesoscale eddies are present in the Arctic Ocean; it is therefore important to extend the Ice-Ocean Governor theory to include lateral fluxes due to mesoscale eddies. Here, a nonlinear ordinary differential equation is derived that represents the effects of wind stress, the Ice-Ocean Governor, and eddy fluxes. Equilibrium and time-varying solutions to this three-way balance equation are obtained and shown to closely match the output from a hierarchy of numerical simulations, indicating that the analytical model represents the processes controlling BG equilibration. The equilibration timescale derived from this three-way balance is faster than the eddy equilibration timescale and slower than the Ice-Ocean Governor equilibration timescales for most values of eddy diffusivity. The sensitivity of the BG equilibrium depth to changes in eddy diffusivity and the presence of the Ice-Ocean Governor is also explored. These results show that predicting the response of the BG to changing surface forcing and sea ice conditions requires faithfully capturing the three-way balance between the Ice-Ocean Governor, wind stress, and eddy fluxes.

History

Publication title

JGR Oceans

Volume

124

Issue

5

Pagination

3107-3124

ISSN

2169-9275

Department/School

Institute for Marine and Antarctic Studies

Publisher

Wiley-Blackwell Publishing Inc.

Place of publication

United States

Rights statement

© 2019. American Geophysical Union.

Repository Status

  • Open

Socio-economic Objectives

Oceanic processes (excl. in the Antarctic and Southern Ocean)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC