University of Tasmania
Browse

File(s) under permanent embargo

Effects of elevated pCO2 on the photosynthetic performance of the sea ice diatoms Navicula directa and Navicula glaciei

journal contribution
posted on 2023-05-21, 07:48 authored by Salleh, S, Abdul Mubin, NAA, Darif, NAM, Mohammad, M, Andrew McMinnAndrew McMinn

Sea ice algal communities are generally dominated by pennate diatoms, which commonly occur at the ice-water interface and in brine channels. They also make a significant contribution to higher trophic levels associated with sea ice habitats. Here, the photosynthetic responses of two sea ice diatom species, Navicula directa and Navicula glaciei, to changes in pCO2 under controlled laboratory conditions were compared. pCO2 (390 ppm and 750 ppm) was manipulated to simulate a shift from present levels (1990) to predicted “IPCC year 2100 worst-case scenario” levels. To investigate these effects, a pulse-amplitude modulation (PAM) fluorometer was used to measure the photosynthetic performance. The ability of the sea ice algae to grow and photosynthesize within physio-chemical gradients in the sea ice suggests that both sea ice species are likely to be well adapted to cope with changes in pCO2 concentrations. Lower pH and higher pCO2 for 7 days resulted in increased biomass, especially for N. directa. However, a decline in photosynthetic capacity (rETRmax) was observed for both species (highest value 11.375 ± 0.163, control; and 8.322 ± 1.282, treatment). Navicula glaciei showed significant effects of elevated pCO2 (p < 0.05) on its photosynthetic response, while N. directa did not. Future changes in CO2 and pH may thus not significantly affect all diatoms but may lead to changes in the photosynthetic activities in some species.

History

Publication title

Journal of Applied Phycology

Volume

34

Pagination

1447-1456

ISSN

0921-8971

Department/School

Institute for Marine and Antarctic Studies

Publisher

Kluwer Academic Publ

Place of publication

Van Godewijckstraat 30, Dordrecht, Netherlands, 3311 Gz

Rights statement

© 2022 The Author(s), under exclusive licence to Springer Nature B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Assessment and management of Antarctic and Southern Ocean ecosystems

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC