University of Tasmania
Browse

File(s) under permanent embargo

Emerging spatial curvature can resolve the tension between high-redshift CMB and low-redshift distance ladder measurements of the Hubble constant

journal contribution
posted on 2023-05-21, 07:11 authored by Krzysztof BolejkoKrzysztof Bolejko
The measurements of the Hubble constant reveal a tension between high-redshift (CMB) and low-redshift (distance ladder) constraints. So far neither observational systematics nor new physics has been successfully implemented to explain away this tension. This paper presents a new solution to the Hubble constant problem. The solution is based on the Simsilun simulation (relativistic simulation of the large scale structure of the Universe) with the ray-tracing algorithm implemented. The initial conditions for the Simsilun simulation were set up as perturbations around the ΛCDM model. However, unlike in the standard cosmological model (i.e., ΛCDM model+perturbations), within the Simsilun simulation relativistic and nonlinear evolution of cosmic structures lead to the phenomenon of emerging spatial curvature, where the mean spatial curvature evolves from the spatial flatness of the early Universe towards the slightly curved present-day Universe. Consequently, the present-day expansion rate is slightly faster compared to the spatially flat ΛCDM model. The results of the ray-tracing analysis show that the Universe which starts with initial conditions consistent with the Planck constraints should have the Hubble constant H0=72.5±2.1 km s-1 Mpc-1. When the Simsilun simulation was rerun with no inhomogeneities imposed, the Hubble constant inferred within such a homogeneous simulation was H0=68.1±2.0 km s-1 Mpc-1. Thus, the inclusion of nonlinear relativistic evolution that leads to the emergence of the spatial curvature can explain why the low-redshift measurements favor higher values compared to the high-redshift constraints and alleviate the tension between the CMB and distance ladder measurements of the Hubble constant.

Funding

Australian Research Council

History

Publication title

Physical Review D

Volume

97

Article number

103529

Number

103529

Pagination

1-9

ISSN

2470-0010

Department/School

School of Natural Sciences

Publisher

American Physical Society

Place of publication

United States

Rights statement

Copyright 2018 American Physical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC