University of Tasmania
Browse
149470_Dynamical analysis of a reduced model for the North Atlantic Oscillation.pdf (9.93 MB)

Dynamical analysis of a reduced model for the North Atlantic Oscillation

Download (9.93 MB)
journal contribution
posted on 2023-05-21, 06:46 authored by Courtney QuinnCourtney Quinn, Harries, D, O'Kane, TJ
The dynamics of the North Atlantic Oscillation (NAO) are analyzed through a data-driven model obtained from atmospheric reanalysis data. We apply a regularized vector autoregressive clustering technique to identify recurrent and persistent states of atmospheric circulation patterns in the North Atlantic sector (20°–90°N, 110°W–0°). To analyze the dynamics associated with the resulting cluster-based models, we define a time-dependent linear delayed map with a switching sequence set a priori by the cluster affiliations at each time step. Using a method for computing the covariant Lyapunov vectors (CLVs) over various time windows, we produce sets of mixed singular vectors (for short windows) and approximate the asymptotic CLVs (for longer windows). The growth rates and alignment of the resulting time-dependent vectors are then analyzed. We find that the window chosen to compute the vectors acts as a filter on the dynamics. For short windows, the alignment and changes in growth rates are indicative of individual transitions between persistent states. For long windows, we observe an emergent annual signal manifest in the alignment of the CLVs characteristic of the observed seasonality in the NAO index. Analysis of the average finite-time dimension reveals the NAO as the most unstable state relative to the NAO+, with persistent AR states largely stable. Our results agree with other recent theoretical and empirical studies that have shown blocking events to have less predictability than periods of enhanced zonal flow.

History

Publication title

Journal of the Atmospheric Sciences

Volume

78

Issue

5

Pagination

1647-1671

ISSN

0022-4928

Department/School

School of Natural Sciences

Publisher

Amer Meteorological Soc

Place of publication

45 Beacon St, Boston, USA, Ma, 02108-3693

Rights statement

© Copyright 2021 American Meteorological Society (AMS). For permission to reuse any portion of this Work, please contact permissions@ametsoc.org. Any use of material in this Work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC § 108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy).

Repository Status

  • Open

Socio-economic Objectives

Climate variability (excl. social impacts); Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC