University of Tasmania
Browse
149428 - Non-local energy dissipation of lee waves and turbulence.pdf (2.3 MB)

Non-local energy dissipation of lee waves and turbulence in the South China Sea

Download (2.3 MB)
journal contribution
posted on 2023-05-21, 06:43 authored by Zheng, K, Maxim NikurashinMaxim Nikurashin, Tian, J
Breaking of internal lee waves has been shown to drive enhanced turbulence and mixing in regions where strong bottom flows interact with rough topography. However, theoretical predictions for the energy conversion from the bottom flows into lee waves differ from the corresponding turbulent energy dissipation rates observed locally at the wave generation sites. Recent idealized numerical simulations suggest that the discrepancy may be attributed to non-local wave breaking and dissipation effects: when a mean flow impinges on rough topography and generates lee waves and turbulence, a significant fraction of the generated energy gets advected downstream of the generation site and dissipates remotely. Here, we present a case study for the non-local lee wave energy dissipation in the South China Sea by using a combination of in situ mooring observations of the bottom flow interacting with two topographic features and corresponding numerical simulations. The results show that most of the near-inertial and high-frequency response observed at the mooring site is not locally generated, but rather is produced by the interaction of the subinertial flow with the topographic feature upstream. The wave and turbulent energy detected at the mooring site can be enhanced by an order of magnitude compared to the energy of the locally generated motions. The simulations confirm that up to 70% of the enhanced energy is advected into the region by the subinertial flow, while the rest is radiated into the region as waves. Implication of our results for mixing observations and ocean model parameterizations are discussed.

Funding

Australian Research Council

History

Publication title

JGR Oceans

Volume

127

Article number

e2021JC017877

Number

e2021JC017877

Pagination

1-15

ISSN

2169-9275

Department/School

Institute for Marine and Antarctic Studies

Publisher

Wiley-Blackwell Publishing Inc.

Place of publication

United States

Rights statement

© 2022. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC 4.0) License, (https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Repository Status

  • Open

Socio-economic Objectives

Climate change models

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC