eCite Digital Repository

Use of non-matrix matched reference materials for the accurate analysis of calcium carbonate by LA-ICP-MS

Citation

Thompson, JA and Thompson, JM and Goemann, K and Lounejeva, E and Cooke, DR and Danyushevsky, L, Use of non-matrix matched reference materials for the accurate analysis of calcium carbonate by LA-ICP-MS, Geostandards and Geoanalytical Research, 46, (1) pp. 97-115. ISSN 1639-4488 (2021) [Refereed Article]


Preview
PDF (Online first)
Available from 19 September 2022
2Mb

Preview
PDF (Author version)
Pending copyright assessment - Request a copy
1Mb

Copyright Statement

2021 The Authors. Geostandards and Geoanalytical Research 2021 International Association of Geoanalysts

DOI: doi:10.1111/ggr.12405

Abstract

Advances in laser ablation inductively coupled plasma-mass spectrometry have improved analytical precision for mineral analysis, expanding geological interpretations from LA-ICP-MS results. However, with improvements in analytical precision, systematic errors from calibration can become more obvious and affect data quality. To improve the accuracy of the LA-ICP-MS technique, a fully quantified method is presented for the analysis of minerals with a CaCO3 matrix. An in-house calcite sample (P-Cal) was developed with an independently constrained composition and compared with measurement results from LA-ICP-MS analysis, generated using multiple spot sizes, laser fluences and calibration methods. For many elements, calibration against NIST SRM 612 as a calibration reference material and USGS GSD-1G and USGS BCR-2G as secondary reference materials (calibration B) provided the best accuracy for CaCO3 analysis. Ablation rates and element yield (ICP-MS signal intensity in counts per second for a given isotope relative to the mass fraction of the respective element) in calcium carbonate closely resembles NIST SRM 612; however, the down-hole fractionation curves of USGS BCR-2G (basaltic glass matrix) are a better fit for carbonate. Variations in accuracy for measurements at different spot sizes are negligible compared with the other effects discussed. Additionally, ablation characteristics for powdered crystals versus large fragments produce a negligible effect on the accuracy of the results for calcium carbonate.

Item Details

Item Type:Refereed Article
Keywords:calcite LA-ICP-MS analysis, calcium carbonate, LA-ICP-MS, chemical analysis, method validation, mineral chemistry
Research Division:Earth Sciences
Research Group:Geochemistry
Research Field:Inorganic geochemistry
Objective Division:Mineral Resources (Excl. Energy Resources)
Objective Group:Mineral exploration
Objective Field:Copper ore exploration
UTAS Author:Thompson, JA (Mrs Jennifer Thompson)
UTAS Author:Thompson, JM (Mr Jay Thompson)
UTAS Author:Goemann, K (Dr Karsten Goemann)
UTAS Author:Lounejeva, E (Ms Elena Lounejeva)
UTAS Author:Cooke, DR (Professor David Cooke)
UTAS Author:Danyushevsky, L (Professor Leonid Danyushevsky)
ID Code:149025
Year Published:2021
Funding Support:Australian Research Council (IH130200004)
Deposited By:CODES ARC
Deposited On:2022-03-02
Last Modified:2022-06-27
Downloads:0

Repository Staff Only: item control page