University of Tasmania
Browse

File(s) under permanent embargo

Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation

journal contribution
posted on 2023-05-21, 05:38 authored by Min, JL, Hemani, G, Hannon, E, Dekkers, KF, Castillo-Fernandez, J, Luijk, R, Carnero-Montoro, E, Lawson, DJ, Burrows, K, Suderman, M, Bretherick, AD, Richardson, TG, Klughammer, J, Iotchkova, V, Sharp, G, Al Khleifat, A, Shatunov, A, Iacoangeli, A, McArdle, WL, Ho, KM, Kumar, A, Soderhall, C, Soriano-Tarraga, C, Giralt-Steinhauer, E, Kazmi, N, Mason, D, McRae, AF, Corcoran, DL, Sugden, K, Kasela, S, Cardona, A, Day, FR, Cugliari, G, Viberti, C, Guarrera, S, Lerro, M, Gupta, R, Bollepalli, S, Mandaviya, P, Zeng, Y, Clarke, TK, Walker, RM, Schmoll, V, Czamara, D, Ruiz-Arenas, C, Rezwan, FI, Marioni, RE, Lin, T, Awaloff, Y, Germain, M, Aissi, D, Zwamborn, R, van Eijk, K, Dekker, A, van Dongen, J, Hottenga, JJ, Willemsen, G, Xu, CJ, Barturen, G, Catala-Moll, F, Kerick, M, Wang, C, Phillip MeltonPhillip Melton, Elliott, HR, Shin, J, Bernard, M, Yet, I, Smart, M, Gorrie-Stone, T, Shaw, C, Al Chalabi, A, Ring, SM, Pershagen, G, Melen, E, Jimenez-Conde, J, Roquer, J, Lawlor, DA, Wright, J, Martin, NG, Montgomery, GW, Moffitt, TE, Poulton, R, Esko, T, Milani, L, Metspalu, A, Perry, JRB, Ong, KK, Wareham, NJ, Matullo, G, Sacerdote, C, Panico, S, Caspi, A, Arseneault, L, Gagnon, F, Ollikainen, M, Kaprio, J, Felix, JF, Rivadeneira, F, Tiemeier, H, van IJzendoorn, MH

Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15–17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype–phenotype map than previously anticipated.

History

Publication title

Nature Genetics

Volume

53

Issue

9

Pagination

1311-1321

ISSN

1061-4036

Department/School

Menzies Institute for Medical Research

Publisher

Nature Publishing Group

Place of publication

345 Park Ave South, New York, USA, Ny, 10010-1707

Rights statement

Copyright 2021 Nature Publishing Group

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the health sciences

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC