University of Tasmania
Browse
148274 - Landfast ice controls on turbulence in Antarctic coastal seas.pdf (2.83 MB)

Landfast ice controls on turbulence in Antarctic coastal seas

Download (2.83 MB)
journal contribution
posted on 2023-05-21, 04:50 authored by Inall, ME, Brearley, JA, Henley, SF, Alexander FraserAlexander Fraser, Reed, S
Knowledge of the ocean surface layer beneath Antarctic landfast ice is sparse. In this article surface layer turbulent and fine structure are quantified with and without landfast ice at the same West Antarctic Peninsula location. Landfast ice reduced turbulence levels locally to an order of magnitude less than ice-free values, and near-inertial energy and sub-inertial tidal energy levels to less than half their ice-free values. Vertical turbulent heat and nutrient fluxes were, respectively, 6 and 10 times greater than previously estimated. Under-ice tidal energy dissipation over the entire Antarctic continental shelf due to seasonal landfast ice cover is estimated to be between 788 MW to ∼6 GW. The total rate of wind-generated turbulence in the surface ocean is greatly reduced by the presence of seasonal landfast ice to an average of 14% of the ice-free value, but with large sectoral variations. Counter-intuitively, however, tides and wind contribute approximately equally to the turbulent kinetic energy budget of the upper ocean between the Antarctic coastline and the maximal landfast ice extent, with large sectoral variations, attributed to geographic variations in the strength of the barotropic tide.

History

Publication title

Journal of Geophysical Research: Oceans

Volume

127

Article number

e2021JC017963

Number

e2021JC017963

Pagination

1-18

ISSN

2169-9275

Department/School

Institute for Marine and Antarctic Studies

Publisher

Wiley-Blackwell Publishing Inc.

Place of publication

United States

Rights statement

© 2021. The Authors. This is an open access article under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, (https://creativecommons.org/licenses/by/4.0/) which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Repository Status

  • Open

Socio-economic Objectives

Antarctic and Southern Ocean ice dynamics; Antarctic and Southern Ocean oceanic processes

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC