University of Tasmania
Browse

File(s) under permanent embargo

Continuous and real-time indoor and outdoor methane sensing with portable optical sensor using rapidly pulsed IR LEDs

journal contribution
posted on 2023-05-21, 04:30 authored by Mahbub, P, Noori, A, John ParryJohn Parry, Davis, J, Arko LucieerArko Lucieer, Miroslav MackaMiroslav Macka

We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH4,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH4 at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m2) in the range of 0.5%–3.35% CH4. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH4 concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV).

History

Publication title

Talanta

Volume

218

Article number

121144

Number

121144

Pagination

1-9

ISSN

0039-9140

Department/School

School of Natural Sciences

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

© 2020 Elsevier B.V. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Air quality