eCite Digital Repository

Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae


Doo, SS and Leplastrier, A and Graba-Landry, A and Harianto, J and Coleman, RA and Byrne, M, Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae, Ecology and Evolution, 10, (15) pp. 8465-8475. ISSN 2045-7758 (2020) [Refereed Article]


Copyright Statement

Copyright 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI: doi:10.1002/ece3.6552


Concurrent anthropogenic global climate change and ocean acidification are expected to have a negative impact on calcifying marine organisms. While knowledge of biological responses of organisms to oceanic stress has emerged from single-species experiments, these do not capture ecologically relevant scenarios where the potential for multi-organism physiological interactions is assessed. Marine algae provide an interesting case study, as their photosynthetic activity elevates pH in the surrounding microenvironment, potentially buffering more acidic conditions for associated epiphytes. We present findings that indicate increased tolerance of an important epiphytic foraminifera, Marginopora vertebralis, to the effects of increased temperature (±3°C) and pCO2 (~1,000 µatm) when associated with its common algal host, Laurencia intricata. Specimens of M. vertebralis were incubated for 15 days in flow-through aquaria simulating current and end-of-century temperature and pH conditions. Physiological measures of growth (change in wet weight), calcification (measured change in total alkalinity in closed bottles), photochemical efficiency (Fv/Fm), total chlorophyll, photosynthesis (oxygen flux), and respiration were determined. When incubated in isolation, M. vertebralis exhibited reduced growth in end-of-century projections of ocean acidification conditions, while calcification rates were lowest in the high-temperature, low-pH treatment. Interestingly, association with L. intricata ameliorated these stress effects with the growth and calcification rates of M. vertebralis being similar to those observed in ambient conditions. Total chlorophyll levels in M. vertebralis decreased when in association with L. intricata, while maximum photochemical efficiency increased in ambient conditions. Net production estimates remained similar between M. vertebralis in isolation and in association with L. intricata, although both production and respiration rates of M. vertebralis were significantly higher when associated with L. intricata. These results indicate that the association with L. intricata increases the resilience of M. vertebralis to climate change stress, providing one of the first examples of physiological buffering by a marine alga that can ameliorate the negative effects of changing ocean conditions.

Item Details

Item Type:Refereed Article
Keywords:foraminifera, ocean acidification, physiological buffering, macroalgae, Laurencia, Marginopora
Research Division:Environmental Sciences
Research Group:Climate change impacts and adaptation
Research Field:Ecological impacts of climate change and ecological adaptation
Objective Division:Environmental Policy, Climate Change and Natural Hazards
Objective Group:Adaptation to climate change
Objective Field:Ecosystem adaptation to climate change
UTAS Author:Graba-Landry, A (Dr Alexia Graba-Landry)
ID Code:147566
Year Published:2020
Web of Science® Times Cited:14
Deposited By:Sustainable Marine Research Collaboration
Deposited On:2021-11-08
Last Modified:2022-08-18
Downloads:6 View Download Statistics

Repository Staff Only: item control page